跳到主要內容

[最佳化] 淺談 Steepest Descent Method (1) - Optimal step size

延續上篇文章 [最佳化] 淺談 Steepest Descent Method (0) -Why Steepest !?,這次我們要介紹 Steepest Descent Method with Optimal Step size

修訂後的Steepest Descent Algorithm 需要甚麼呢?
  1. 初始條件 $u^0$
  2. 最大跌代步長上限(Maximum fixed step size): $H$
  3. Steepest Descent with Optimal Step size的跌代架構(iterative scheme) \[u^{k+1} = u^k - h_k \frac{ \nabla J(u^k)}{|| \nabla J(u^k)||} \ \ \ \ (*)\]
  4. 演算法停止判別機制(stopping criterion) : EX: \[ ||\nabla J(u^k)|| < \varepsilon\]
那麼問題變成 $h_k$ 該怎麼求?

首先我們考慮第 $k$次 跌代,手上有 $u^k$,則我們可以定義
\[
\tilde J(h) := J(u^k - h \frac{ \nabla J(u^k)}{|| \nabla J(u^k)||})
\]接著我們做 Line search 找出一個最佳的 $h \in [0,H] $ ( 亦即 $\min \tilde J(h)$) 把此 $h$ 稱做 $h_k $,也就是說
\[
\tilde J(h_k) = \displaystyle \min_{h \in [0, H]} \tilde J(h)
\]做Line search之後得到的 $h_k$ 再把他放回 $(*)$ 即可!!
\[
u^{k+1} = u^k - h_k \frac{ \nabla J(u^k)}{|| \nabla J(u^k)||} \ \ \ \ (*)
\]上式即稱為 Steepest Descent with Optimal Step size (此Optimal step 由Line search 對 $ \min J(u^k - h \frac{ \nabla J(u^k)}{|| \nabla J(u^k)||})$ 求得)

對於Steepest Descent Algorithm而言,我們有 現在的跌代步的梯度 與下一個跌代步的梯度互為垂直;亦即
\[
\left ( \nabla J(u^k) \right )^T \cdot \nabla J(u^{k+1}) =0
\]現在如果我們考慮更一般的情況,

===============================
Theorem: (Optimal Descent Condition)
考慮 $v \in \mathbb{R}^n$ 為某一個方向 (不必是梯度),且假設 $h_k$ 把 $\tilde J(u^k + h \cdot v)$最小化,且我們的跌代式為
\[
u^{k+1} = u^k + h_k \cdot v
\]則我們有 $v^T \cdot \nabla J(u^{k+1}) =0$,我們稱此條件為 Optimal Descent Conditon。
===============================

Proof:
我們欲證  $v^T \cdot \nabla J(u^{k+1}) =0$,

故由  $h_k$ 把 $\tilde J(u^k + h \cdot v)$最小化 的假設,我們已知一階必要條件成立,故可利用一階必要條件FONC
\[\frac{{\partial \tilde J({u^k} + h \cdot v)}}{{\partial h}} = 0
\]為了方便起見,現在令 $z: = {u^k} + h \cdot v$,則上式可推得
\[\begin{array}{l}
\frac{{d\tilde J(z)}}{{dh}} = \frac{{\partial \tilde J(z)}}{{\partial {z_1}}}\frac{{\partial {z_1}}}{{\partial h}} + \frac{{\partial \tilde J(z)}}{{\partial {z_2}}}\frac{{\partial {z_2}}}{{\partial h}}... + \frac{{\partial \tilde J(z)}}{{\partial {z_n}}}\frac{{\partial {z_n}}}{{\partial h}} = 0\\
 \Rightarrow \frac{{d\tilde J(z)}}{{dh}} = \frac{{\partial \tilde J(z)}}{{\partial {z_1}}}{v_1} + \frac{{\partial \tilde J(z)}}{{\partial {z_2}}}{v_2}... + \frac{{\partial \tilde J(z)}}{{\partial {z_n}}}{v_n} = 0\\
 \Rightarrow \frac{{d\tilde J(z)}}{{dh}} = \left[ {\begin{array}{*{20}{c}}
{{v_1}}&{{v_2}}& \cdots &{{v_n}}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{\frac{{\partial \tilde J(z)}}{{\partial {z_1}}}}\\
{\frac{{\partial \tilde J(z)}}{{\partial {z_2}}}}\\
 \vdots \\
{\frac{{\partial \tilde J(z)}}{{\partial {z_n}}}}
\end{array}} \right] = 0\\
 \Rightarrow \frac{{d\tilde J(z)}}{{dh}} = {v^T}\nabla \tilde J(z) = {v^T}\nabla \tilde J({u^k} + h \cdot v) = {v^T}\nabla \tilde J({u^{k + 1}}) = 0
\end{array}
\]最後一個等式成立是由於 $h$ 最小化 $\tilde J(u^k + h \cdot v)$,故稱此$h=h_k$,又由跌代式的假設 $u^{k+1} = u^k + h_k \cdot v$。 $\square$


那麼現在我們來看看如果目標函數是標準二次的情況

考慮如下標準二次函數
\[
J(u) = u^T A u + b^T u + c, \ A=A^T, \ A \succ 0
\]注意到上述二次函數可以直接用 一階必要條件FONC ( $\nabla J(u^k) =0$) 與 二階充分條件SOSC ($\nabla^2 J(u^k) \succ 0$) 直接求解,可得最佳解為 $u^* = \frac{1}{2} A^{-1}b$

那麼如果我們現在採用 Steepest Descent Algorithm with Optimal Step size $h_k$ ,我們想要知道選怎樣的 $h_k$ 可以得到同樣的最佳解呢?

故首先給定初始條件 $u^0$, 且給定足夠大的步長上限 $H$,

接著我們寫下 Line Search需要的式子
\[
\tilde J (h) := J(u^k  - h \cdot \nabla J(u^k)) \ \ \ \ (*)
\] ,目標是要找出 $h =?$

首先觀察 $(*)$,我們可以先計算上式的梯度部分,由 FONC 可知梯度為
\[
\nabla J(u^k) = 2 A u^k + b
\]故將其代入 $(*)$ 可得
\[
\tilde J(h): = J\left( {{u^k} - h\left( {2A{u^k} + b} \right)} \right)
\]又因為
\[
J(u) = u^T A u + b^T u + c
\]故可推得
\[\begin{array}{l}
 \Rightarrow \tilde J(h) = {\left( {{u^k} - h\left( {2A{u^k} + b} \right)} \right)^T}A\left( {{u^k} - h\left( {2A{u^k} + b} \right)} \right)\\
\begin{array}{*{20}{c}}
{}&{}&{}&{}
\end{array} + {b^T}\left( {{u^k} - h\left( {2A{u^k} + b} \right)} \right) + c
\end{array}
\]由於 $h$ 為最小化 $\tilde J(h)$ 故由FONC對 $h$ 可知 $\frac{d \tilde J(h)}{dh} =0$ 亦即
\[\begin{array}{l}
 \Rightarrow \frac{{d\tilde J(h)}}{{dh}} = 0\\
 \Rightarrow  - {u^k}^TA\left( {2A{u^k} + b} \right) - {\left( {2A{u^k} + b} \right)^T}A{u^k}\\
\begin{array}{*{20}{c}}
{}&{}&{}&{}
\end{array} + 2h{\left( {2A{u^k} + b} \right)^T}A\left( {2A{u^k} + b} \right) - {b^T}\left( {2A{u^k} + b} \right) = 0\\
 \Rightarrow {h_k}: = h = \frac{1}{2}\frac{{{{\left( {2A{u^k} + b} \right)}^T}\left( {2A{u^k} + b} \right)}}{{{{\left( {2A{u^k} + b} \right)}^T}A\left( {2A{u^k} + b} \right)}}
\end{array}
\]
Comments:
1. 注意到上式中分母為 ${{{\left( {2A{u^k} + b} \right)}^T}A\left( {2A{u^k} + b} \right)}$ 為 $1 \times 1$ 此時分母不再是矩陣或者向量,故可以直接執行除法。且由於我們的假設 $A$ 矩陣為正定矩陣,亦即 $x^T A x >0, \forall x \neq 0$,仔細觀察上式分母,若令 $x:={\left( {2A{u^k} + b} \right)}$,我們確實得到
\[
{{{\left( {2A{u^k} + b} \right)}^T}A\left( {2A{u^k} + b} \right)} = x^T A x >0
\]

留言

這個網誌中的熱門文章

[數學分析] 什麼是若且唯若 "if and only if"

數學上的 if and only if  ( 此文不討論邏輯學中的 if and only if,只討論數學上的 if and only if。) 中文翻譯叫做  若且唯若 (or 當且僅當) , 記得當初剛接觸這個詞彙的時候,我是完全不明白到底是甚麼意思,查了翻譯也是愛莫能助,畢竟有翻跟沒翻一樣,都是有看沒有懂。 在數學上如果看到 if and only if  這類的句子,其實是表示一種 雙條件句 ,通常可以直接將其視為" 定義(Definition)" 待之,今天要分享的是這樣的一個句子如何用比較直觀的方法去看他 假設我們現在有 兩個邏輯陳述句 A 與  B. 注意到,在此我們不必考慮這兩個陳述句到底是什麼,想表達什麼,或者到底是否為真(true),這些都不重要。只要知道是兩個陳述即可。 現在,考慮新的陳述:  "A if and only if B" 好了,現在主角登場,我們可以怎麼看待這個句子呢? 事實上我們可以很直覺的把這句子拆成兩部分看待,也就是 "( A if B ) and ( A only if B )" 那麼先針對第一個部分  A if B  來看, 其實這句就是說  if B then A, 更直白一點就是 "if B is true, then A is also true".  在數學上等價可以寫為 "B implies A" .  或者更常用一個箭頭符號來表示 "B $\Rightarrow$  A"  現在針對第二個部分  A only if B 此句意指  "If B is not true, then A is also not true". 所以如果已知 A is true,  那麼按照上句不難推得 B is also true 也就是說  A only if B  等價為 "If A is true then B is also true". 同樣,也可以寫作   "A implies B"   或者用箭頭表示  "A   $\Rightarrow$     B".

[數學分析] 淺談各種基本範數 (Norm)

這次要介紹的是數學上一個重要的概念: Norm: 一般翻譯成 範數 (在英語中 norm 有規範的意思,比如我們說normalization就是把某種東西/物品/事件 做 正規化,也就是加上規範使其正常化),不過個人認為其實翻譯成 範數 也是看不懂的...這邊建議把 Norm 想成長度就好 (事實上norm是長度的抽象推廣), 也許讀者會認為好端端的長度不用,為何又要發明一個 norm 來自討苦吃?? 既抽象又艱澀。 事實上想法是這樣的: 比如說現在想要比較兩個數字 $3$ , $5$ 之間的大小,則我們可以馬上知道 $ 3 < 5 $;同樣的,如果再考慮小數與無理數如 $1.8753$ 與 $\pi$,我們仍然可以比較大小 $1.8753 < \pi = 3.1415...$ 故可以發現我們有辦法對 "純量" 做明確的比大小,WHY? 因為前述例子中 $3$, $5$, $1.8753$ or $\pi$ 其各自的大小有辦法被 "measure "! 但是如果是現在考慮的是一組數字 我們如何去measure 其大小呢?? 比如說 \[x:=[1, -2, 0.1, 0 ]^T \]上式的大小該是多少? 是 $1$? $-2$? $0.1$??? 再者如果更過分一點,我們考慮一個矩陣 \[A = \left[ {\begin{array}{*{20}{c}} 1&2\\ 3&4 \end{array}} \right] \],想要知道這個矩陣的大小又該怎麼辦?? 是 $1$ ? $2$ 還是 $4$ ?..其實現階段我們說不清楚。 也正是如此,可以發現我們確實需要新的 "長度" 的定義來幫助我們如何去 measure 矩陣/向量/甚至是函數的大小。 故此,我們首先定義甚麼是Norm,(也就是把 "長度" or "大小" 的本質抽離出來) ================== Definition: Norm 考慮 $V$ 為一個向量空間(Vector space),則我們說  Norm 為一個函數 $||\cdot|| : V \rightarrow \mathbb{R}$ 且滿足下列性質