跳到主要內容

發表文章

目前顯示的是 五月, 2012的文章

[隨機分析] How to solve SDE practically (5) - Stochastic Exponential

Again,這是這系列的第五篇,這次來看看一個稍微不一樣的例子

Example 1: Stochastic Exponential for Standard Brownian Motion
令 $\lambda \in \mathbb{R}$,考慮如下 Stochastic Process:
\[
X_t = 1 + \lambda \int_0^t X_s dB_s \ \ \ \ (*)
\]試求解上式。

Comment:
回憶在微分方程,
\[
g(t) = 1 + \lambda \int_0^t g(s) ds
\]我們有 Unique 的解且具備 Exponential 形式: $g(t) := e^{\lambda t}$ 。故可以想見式 $(*)$ 應該也有此 Exponential 的解的樣子。

Solution
首先將 $(*)$ 改寫成微分形式:
\[\begin{array}{l}
{X_t} = 1 + \lambda \int_0^t {{X_s}} d{B_s}\\
 \Rightarrow d{X_t} = \lambda {X_t}d{B_t}
\end{array}
\] 這邊我們直接求解 (這邊略過此SDE的 唯一性 與 存在性 檢驗,直接求解。)
 進一步改寫 $d{X_t} - \lambda {X_t}d{B_t} = 0$ 並且定義積分因子 (透過一點 trial and error):
\[{U_t}: = {e^{ - \lambda \int_0^t {d{B_s}}  + \frac{1}{2}{\lambda ^2}t}} = {e^{ - \lambda {B_t} + \frac{1}{2}{\lambda ^2}t}}
\]利用 Integration by part (Product rule) 計算 $d(X_t U_t)$:
\[
 d\left( {{X_t}{U_t}} \right) = {X_t}d\left( {{U_t}} \right) + {U_t}d\left( {{X_t}} \right) + d\left\langle {{U_t},{X_t}} \right\rangle  \ \ \ \ (\star)
\]其中
\[\left\{ \begin{array}{l}
d\le…