跳到主要內容

[最佳控制] 離散時間 穩態 LQR 控制問題 (1)

延續前篇,這次要介紹的是 Discrete Time Linear Quadratic Regulator in Infinite Horizon 或稱 Steady State LQR。

================
LQR Problem (Infinite Horizon LQR):
考慮離散狀態方程:
\[
x(k+1) = A x(k) + B u(k)
\]其中 $x(k) \in \mathbb{R}^n, A\in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, u(k) \in \mathbb{R}^{m \times 1}$且 $(A,B)$ controllable。
定義 Performance index:
\[
J(u) = \displaystyle \sum_{k=0}^{\infty} x^T(k+1) Q x(k+1) + u^T(k) R u(k)
\] 其中 $Q, R$ 必須滿足 $Q^T = Q, Q \succ 0$, $R^T = R, R \succ 0$。 (亦即 $Q, R$ 必須為 對稱 + 正定 矩陣)

試求出一組最佳控制力序列 $u^*$ 使得成本函數 $J(u)$ 最小。
================

Comment:
讀者須注意到 Infinite Horizon 的 LQR問題要求計算 Performance index 為無窮級數和,此解必須保證收斂。以下定理告訴我們何時 此 Performance index 收斂

Lemma
考慮離散系統 $x(k+1) = A x(k) + B u(k)$,若 $(A,B)$ 可控制,且選 $Q, R >0$ 為正定矩陣,則上述 infinite horizon LQR 問題保證 閉迴路系統 狀態收斂到 $0$ 且 cost 為有界。

Proof: omitted. (see J. B. Rawlings and D. Q. Mayne, "Model Predictive Control: Theory and Design, p. 24", 2009)


現在我們可以開始求解 Infinite Horizon LQR問題:
Solution
回憶 Steady State Bellman Equation,為了符號簡便起見,我們寫成 functional equation 形式,
\[
I(x) = \displaystyle \min_{u \in \Omega} \{J(x,u) + I(f(x,u)) \}
\] 上式中 $J(x,u)$ 為 Branch cost,亦即 $J(x,u) = x^T Q x + u^T R u$ (並非 $\sum_{k=0}^{\infty} (\cdot)...$)

首先我們猜一組解 $I(x) = x^T P x$ 且矩陣 $P$ 為對稱正定矩陣,亦即滿足 $P^T = P, P \succ 0$。我們之後會找到此 $P$ 應該長甚麼樣子。

將猜測的解代入上述的 Steady State Bellman Equation,故現在我們得到
\[
I(x) = \min_{u \in \Omega} \{J(x,u) + I(f(x,u)) \}
\]注意到 $I(f(x,u) = f(x,u)^T P f(x,u) = (Ax+Bu)^TP(Ax+Bu)$,故我們可得
 \[
\begin{array}{l} I(x) = \mathop {\min }\limits_{u \in \Omega } \{ J(x,u) + I(f(x,u))\} \\ \Rightarrow {x^T}Px = \mathop {\min }\limits_u \left\{ {{x^T}Qx + {u^T}Ru + {{\left( {Ax + Bu} \right)}^T}P\left( {Ax + Bu} \right)} \right\}\\ \Rightarrow {x^T}Px = \mathop {\min }\limits_u \left\{ {{x^T}\left( {Q + {A^T}PA} \right)x + 2{x^T}{A^T}PBu + {u^T}Ru + {u^T}{B^T}PBu} \right\} \end{array}
\]透過一階必要條件 FONC: $ \frac{\partial }{{\partial u}} = 0$ 對上式右邊求解
 \[\begin{array}{l} 2{\left( {{x^T}{A^T}PB} \right)^T} + 2Ru + 2{B^T}PBu = 0\\ \Rightarrow {u^*} = - {\left( {R + {B^T}PB} \right)^{ - 1}}{B^T}PAx \end{array}
\]現在將 $u^*$ 代回 $(*)$  可得 \[\begin{array}{l} {x^T}Px = \mathop {\min }\limits_u \left\{ {{x^T}\left( {Q + {A^T}PA} \right)x + 2{x^T}{A^T}PBu + {u^T}Ru + {u^T}{B^T}PBu} \right\}\\ \Rightarrow {x^T}Px = \left\{ {{x^T}\left\{ {Q + {A^T}PA - {A^T}PB{{\left( {R + {B^T}PB} \right)}^{ - 1}}{B^T}PA} \right\}x} \right\} \end{array}
\]比較左右兩邊可得到 $P$ 必須滿足下式: \[P = Q + {A^T}PA - {A^T}PB{\left( {R + {B^T}PB} \right)^{ - 1}}{B^T}PA\] 此式稱為 Discrete Time Algebraic Ricatti Equation (ARE),一般而言,可利用 MATLA 指令 dare(A,B,Q, R) 求解 P。

由於 $u^* = - {\left( {R + {B^T}PB} \right)^{ - 1}}{B^T}PAx$,其中除了 $P$ 未定之外,其餘所需要的參數都已知且皆與跌代時間無關,故此無窮時間LQR問題得到的 最佳控制力為 Time invariant。

現在我們總結如下:求解無窮時間的LQR問題只要做兩個步驟即可
STEP 1: 求解一次 Algebraic Ricatti Equation 得到 $P$ (利用 MATLAB: dare.m 或者徒手計算)
\[
P = Q + {A^T}PA - {A^T}PB{\left( {R + {B^T}PB} \right)^{ - 1}}{B^T}PA
\]STEP2 : 將 $P$ 代入 ${u^*} =  - {\left( {R + {B^T}PB} \right)^{ - 1}}{B^T}PAx$

下面我們看個例子:

Example:
考慮一個離散時間線性系統狀態方程:
\[
x_1(k+1) = x_2(k) \\
x_2(k+1) = x_1(k) + u(k)
\]且考慮 Cost function:
\[
J = \sum_{k=0}^{\infty}2x_1^2(k) + 2x_1(k)x_2(k) + x_2^2(k) + 3u^2(k)
\] 且控制力具有如下形式:
\[
u(k) = K_1 x_1(k) + K_2 x_2(k)

\] 試求 $K_1, K_2$ 使 上述 Cost function 最小:

Solution
首先定義  $x(k) := [x_1(k), x_2(k)]^T$ ,則我們有
\[x\left( {k + 1} \right) = \underbrace {\left[ {\begin{array}{*{20}{c}}
0&1\\
1&0
\end{array}} \right]}_A\left[ {\begin{array}{*{20}{c}}
{{x_1}(k)}\\
{{x_2}(k)}
\end{array}} \right] + \underbrace {\left[ {\begin{array}{*{20}{c}}
0\\
1
\end{array}} \right]}_Bu(k)
\] 與 Cost function
\[\begin{array}{l}
J = \sum\limits_{k = 0}^\infty {(2x_1^2(} k) + 2{x_1}(k){x_2}(k) + x_2^2(k) + 3{u^2}(k))\\
\begin{array}{*{20}{c}}
{}
\end{array} = x{\left( k \right)^T}\underbrace {\left[ {\begin{array}{*{20}{c}}
2&1\\
1&1
\end{array}} \right]}_Qx\left( k \right) + \underbrace 3_R{u^2}(k)
\end{array}
\] 那麼現在此問題變成 Steady-state LQR problem,故由前述討論可知我們有 Optimal feedback control 為
\[
u^*(k) = -(R+B^T P B)^{-1} B^T PA \cdot x(k)

\] 其中 $P$ 滿足 $P=P^T, P \succ 0$ 可由 ARE
\[
P= A^TPA - A^T PB (R+ B^TPB)^{-1}B^TPA+Q

\]利用 MATLAB 指令 dare(A,B,Q,R) 解得 $P = \left[ {\begin{array}{*{20}{c}}
{3.7841}&{1.6815}\\
{1.6815}&{4.4022}
\end{array}} \right]$ 現在將 $P$ 帶回 $u^*$中
\[u\left( k \right) = - \left[ {\begin{array}{*{20}{c}}
{0.5947}&{0.2272}
\end{array}} \right]x\left( k \right)

\]i.e., $K_1 = -05947, K_2 =-0.2272$. $\square$


留言

張貼留言

這個網誌中的熱門文章

[數學分析] 什麼是若且唯若 "if and only if"

數學上的 if and only if  ( 此文不討論邏輯學中的 if and only if,只討論數學上的 if and only if。) 中文翻譯叫做  若且唯若 (or 當且僅當) , 記得當初剛接觸這個詞彙的時候,我是完全不明白到底是甚麼意思,查了翻譯也是愛莫能助,畢竟有翻跟沒翻一樣,都是有看沒有懂。 在數學上如果看到 if and only if  這類的句子,其實是表示一種 雙條件句 ,通常可以直接將其視為" 定義(Definition)" 待之,今天要分享的是這樣的一個句子如何用比較直觀的方法去看他 假設我們現在有 兩個邏輯陳述句 A 與  B. 注意到,在此我們不必考慮這兩個陳述句到底是什麼,想表達什麼,或者到底是否為真(true),這些都不重要。只要知道是兩個陳述即可。 現在,考慮新的陳述:  "A if and only if B" 好了,現在主角登場,我們可以怎麼看待這個句子呢? 事實上我們可以很直覺的把這句子拆成兩部分看待,也就是 "( A if B ) and ( A only if B )" 那麼先針對第一個部分  A if B  來看, 其實這句就是說  if B then A, 更直白一點就是 "if B is true, then A is also true".  在數學上等價可以寫為 "B implies A" .  或者更常用一個箭頭符號來表示 "B $\Rightarrow$  A"  現在針對第二個部分  A only if B 此句意指  "If B is not true, then A is also not true". 所以如果已知 A is true,  那麼按照上句不難推得 B is also true 也就是說  A only if B  等價為 "If A is true then B is also true". 同樣,也可以寫作   "A implies B"   或者用箭頭表示  "A   $\Rightarrow$     B".

[數學分析] 淺談各種基本範數 (Norm)

這次要介紹的是數學上一個重要的概念: Norm: 一般翻譯成 範數 (在英語中 norm 有規範的意思,比如我們說normalization就是把某種東西/物品/事件 做 正規化,也就是加上規範使其正常化),不過個人認為其實翻譯成 範數 也是看不懂的...這邊建議把 Norm 想成長度就好 (事實上norm是長度的抽象推廣), 也許讀者會認為好端端的長度不用,為何又要發明一個 norm 來自討苦吃?? 既抽象又艱澀。 事實上想法是這樣的: 比如說現在想要比較兩個數字 $3$ , $5$ 之間的大小,則我們可以馬上知道 $ 3 < 5 $;同樣的,如果再考慮小數與無理數如 $1.8753$ 與 $\pi$,我們仍然可以比較大小 $1.8753 < \pi = 3.1415...$ 故可以發現我們有辦法對 "純量" 做明確的比大小,WHY? 因為前述例子中 $3$, $5$, $1.8753$ or $\pi$ 其各自的大小有辦法被 "measure "! 但是如果是現在考慮的是一組數字 我們如何去measure 其大小呢?? 比如說 \[x:=[1, -2, 0.1, 0 ]^T \]上式的大小該是多少? 是 $1$? $-2$? $0.1$??? 再者如果更過分一點,我們考慮一個矩陣 \[A = \left[ {\begin{array}{*{20}{c}} 1&2\\ 3&4 \end{array}} \right] \],想要知道這個矩陣的大小又該怎麼辦?? 是 $1$ ? $2$ 還是 $4$ ?..其實現階段我們說不清楚。 也正是如此,可以發現我們確實需要新的 "長度" 的定義來幫助我們如何去 measure 矩陣/向量/甚至是函數的大小。 故此,我們首先定義甚麼是Norm,(也就是把 "長度" or "大小" 的本質抽離出來) ================== Definition: Norm 考慮 $V$ 為一個向量空間(Vector space),則我們說  Norm 為一個函數 $||\cdot|| : V \rightarrow \mathbb{R}$ 且滿足下列性質