跳到主要內容

發表文章

目前顯示的是 十二月, 2009的文章

[數學分析] Power Series and Analytic Functions

================================
Definition: Power Series & Analytic Series 
一個  具有下列形式的 Series 稱為 Power Series:對任意 $x \in \mathbb{R}$,
\[
f(x) = \sum_{n=0}^\infty c_n x^n
\]或者更廣義的來說:
\[
f(x) = \sum_{n=0}^\infty c_n (x-a)^n
\]若函數 $f$ 具有 power series 我們稱為 解析函數 Analytic function
================================

Comments:
1. 解析函數為 "無窮" series 此暗示了一旦 解析函數被定義即表此 series 收斂

2. 一般而言對於 power series 我們有兩種方法判斷 series 是否收斂
(a) 採用 Ratio Test :但此法僅能判斷 series 是否 pointwise convergence。此法如下:
考慮 $f(x) = \sum_{n=0}^\infty c_n (x-a)^n$ ;則 Ratio Test 要判斷 第 $n$ 項 與 第 $n+1$項 之比值是否小於1。如果小於1我們說此 series converges pointwise。亦即 Ratio Test 檢驗下式是否成立:
\[\mathop {\lim }\limits_{n \to \infty } \left| {\frac{{{c_{n + 1}}{{(x - a)}^{n + 1}}}}{{{c_n}{{(x - a)}^n}}}} \right| < 1?
\]關於 Ratio Test 可參考下例:

Example: 
試利用 Ratio Test 判斷 $\sum\limits_{n = 1}^\infty  {\frac{n}{{{2^n}}}} $ 是否收斂?

Solution
令 $c_n =  {\frac{n}{{{2^n}}}}$ 則我們僅需檢驗
\[\mathop {\lim }\limits_{n \to \infty } \left| {\frac{{{c_{n + 1}}}}{{{c_…