8/26/2013

[隨機過程] Wiener Integral (1) - simple function

在介紹之前,建議讀者須具備 Brownian motion (or Wiener process)的基本定義與相關性質。

事實上,Brownian motion $W_t$ 的行為可被視為是對 White noise 隨機過程 積分;也就是說 如果我們令 $X_t$ 為一 White noise 隨機過程 ,則 Brownian motion 可視為是 將此 White noise 送入 一組 積分器 (integrator) ,且其對應的輸出隨機過程 $Y_t$可表示成
\[
Y_t := \int_0^t X_{\tau} d\tau = W_t
\]

Comment:
1. White noise 為( Wide-sense stationary, WSS )隨機過程
2. WSS 隨機過程訊號輸入 LTI系統 必得到輸出亦為 WSS,且輸入輸出互為 Jointly-WSS。關ˊ於 jointly-WSS 的部分有興趣的讀者請參閱:[系統理論] (弱)平穩隨機過程特性 與 線性非時變系統 (2)- Jointly wide-sense stationary and Frequency domain property

現在如果將 White noise 送入一個具有脈衝響應為 $h(t)$的 relaxed LTI 系統 (relaxed 意指在初始時間為 $0$之前系統為靜止狀態 ),那麼其輸出仍可寫為 convolution integral 形式如下:
\[\int_0^\infty  {h\left( {t - \tau } \right){X_\tau }} d\tau  = \int_0^\infty  {h\left( \tau  \right){X_{t - \tau }}} d\tau \]或者我們令 $g(\tau) := h(t- \tau)$可改寫上式如下
\[\int_0^\infty  {g\left( \tau  \right){X_\tau }} d\tau  \ \ \ \ (*)
\]那麼上述對 "White noise" 的積分是否可以定義??

現在我們令 $g(\tau)$ 為在 (被分割 partitioned)區間 $(t_i, t_{i+1}]$上取值為 $g_i$ 的分段常數(piecewise constant) 或稱為 simple function:
\[g(\tau ): = \sum\limits_{i = 1}^n {{{\rm{g}}_i}{1_{\left( {{t_i},{t_{i + 1}}} \right]}}\left( \tau  \right)} \]其中 $1(\cdot)$為 indicator function。
則我們可以將 $(*)$ 改寫為
\[\begin{array}{*{20}{l}}
{\int_0^\infty  {g\left( \tau  \right){X_\tau }} d\tau  = \int_0^\infty  {\sum\limits_{i = 1}^n {{{\rm{g}}_i}{1_{\left( {{t_i},{t_{i + 1}}} \right]}}\left( \tau  \right)} {X_\tau }} d\tau }\\
{\begin{array}{*{20}{c}}
{}&{}&{}&{}
\end{array} = \sum\limits_{i = 1}^n {{{\rm{g}}_i}\int_0^\infty  {{1_{\left( {{t_i},{t_{i + 1}}} \right]}}\left( \tau  \right)} {X_\tau }} d\tau }\\
{\begin{array}{*{20}{c}}
{}&{}&{}&{}
\end{array} = \sum\limits_{i = 1}^n {{g_i}\int_{{t_i}}^{{t_{i + 1}}} {{X_\tau }} d\tau } }\\
{\begin{array}{*{20}{c}}
{}&{}&{}&{}
\end{array} = \sum\limits_{i = 1}^n {{g_i}\left( {\int_0^{{t_{i + 1}}} {{X_\tau }} d\tau  - \int_0^{{t_i}} {{X_\tau }} d\tau } \right)} : = \sum\limits_{i=1}^{n} {{g_i}\left( {{W_{{t_{i+1}} }} - {W_{{t_i}}}} \right)} }
\end{array}\]其中 $W_t$ 為 Wiener process 或稱 Brownian motion。


故我們定義 Wiener integral 如下
============================
Definition: Wiener Integral for piecewise constant function
對一個 piecewise constant 函數 $g(\tau)$,其 Wiener integral 定義為
\[
\int_0^\infty g(\tau) dW_\tau := \sum_{i=1}^n g_i (W_{t_{i+1}} - W_{t_i})
\]============================

注意到上式定義中,等號右方為 加總(summation ) 一組 互相獨立 且 zero mean 的 Gaussian 隨機變數。故此 summation 之後亦必仍為 Gaussian 隨機變數 且其 mean 為 $0$ , variance 為
\[\begin{array}{l}
E\left[ {{{\left( {\int_0^\infty  g (\tau )d{W_\tau }} \right)}^2}} \right] = E\left[ {{{\left( {\sum\limits_{i = 1}^n {{g_i}} ({W_{{t_{i + 1}}}} - {W_{{t_i}}})} \right)}^2}} \right]\\
 = E\left[ {\sum\limits_{i = 1}^n {{g_i}^2} {{({W_{{t_{i + 1}}}} - {W_{{t_i}}})}^2} + \sum\limits_{i = 1}^n {{g_i}} ({W_{{t_{i + 1}}}} - {W_{{t_i}}})\sum\limits_{j = 1}^n {{g_j}} ({W_{{t_{j + 1}}}} - {W_{{t_j}}})} \right]\\
 = \underbrace {E\left[ {\sum\limits_{i = 1}^n {{g_i}^2} {{({W_{{t_{i + 1}}}} - {W_{{t_i}}})}^2}} \right]}_{for\begin{array}{*{20}{c}}
{}
\end{array}i = j} + \underbrace {E\left[ {\sum\limits_{i = 1}^n {{g_i}} ({W_{{t_{i + 1}}}} - {W_{{t_i}}})\sum\limits_{j = 1}^n {{g_j}} ({W_{{t_{j + 1}}}} - {W_{{t_j}}})} \right]}_{for\begin{array}{*{20}{c}}
{}
\end{array}i \ne j}\\
 = \sum\limits_{i = 1}^n {{g_i}^2} E\left[ {{{({W_{{t_{i + 1}}}} - {W_{{t_i}}})}^2}} \right] + \sum\limits_{i = 1}^n {{g_i}} \sum\limits_{j = 1}^n {{g_j}} E\left[ {({W_{{t_{i + 1}}}} - {W_{{t_i}}})({W_{{t_{j + 1}}}} - {W_{{t_j}}})} \right]\\
 = \sum\limits_{i = 1}^n {{g_i}^2} {\sigma ^2}\left( {{t_{i + 1}} - {t_i}} \right) + \underbrace {\sum\limits_{i = 1}^n {{g_i}} \sum\limits_{j = 1}^n {{g_j}} E\left[ {{W_{{t_{i + 1}}}} - {W_{{t_i}}}} \right]E\left[ {{W_{{t_{j + 1}}}} - {W_{{t_j}}}} \right]}_{ = 0}\\
 = \sum\limits_{i = 1}^n {{g_i}^2} {\sigma ^2}\left( {{t_{i + 1}} - {t_i}} \right) = \int_0^\infty  {{g^2}} (\tau )d\tau
\end{array}\]故我們得到
\[E\left[ {{{\left( {\int_0^\infty  g (\tau )d{W_\tau }} \right)}^2}} \right] = \int_0^\infty  {{g^2}} (\tau )d\tau \]

Comment:
1. 對於 $g(\tau)$ 不再是 piecewise constant,但若滿足平方可積條件
\[
\int_0^\infty g(\tau)^2d\tau <\infty
\]則 Wiener integral 仍可透過取極限來定義。
2. \[E\left[ {{{\left( {\int_0^\infty  g (\tau )d{W_\tau }} \right)}^2}} \right] = \int_0^\infty  {{g^2}} (\tau )d\tau \]又稱為 Ito isometry。
3. 若 Wiener integral 允許對隨機過程積分,如
\[
\int_0^\infty W_\tau d W_\tau, \;\; \int_0^\infty B_{\tau} d B_\tau
\]其中 $W_t$ (or $B_t$) 稱為 Wiener process 或者 Brownian motion。此種 積分稱為 Ito integral。有興趣讀者請參閱
[隨機分析] Ito Integral 淺談 (I) - Ito Integral 的建構與 Ito Isometry property

沒有留言:

張貼留言

[數學分析] 連續函數族的逐點上包絡函數不一定連續

連續函數有諸多用途,一般在參數最佳化領域中常見的情況是考慮所謂的 上包絡函數(upper envelope function)。 Definition:  定義函數族 \(\{f_t : t \in T\} \) 其中 \(T\) 為 index set 並考慮對任意 \(x ...