==========================
Definition: Compact Metric Space
(a) 由 open subsets 所形成的集合 $\{G_\alpha\}_{\alpha \in A} $ 被稱為 open cover 若 下列條件成立:
對任意 $x \in X$ 存在 $\alpha \in A$ 使得 $x \in G_\alpha$。
若 index set $A$ 為 finite 則 $\{G_\alpha\}$ 為 finite open cover。
(b) 我們說 metric space $(X,d)$ 為 compact 若下列條件成立:
對任意 open cover of $X$,存在 有限個 subcover of $X$。
==========================
注意到上述定義在 metric space $(X,d)$ 之上,若我們現在考慮其上的子集合:
\[
A \subset X
\]則 $A$ 仍為一個 metric space 且 metric 為 $d$;亦即 $(A,d)$ 仍為一個 metric space。
==========================
Definition: Compact Set
集合 $A \subset X$ 為 compact 若下列條件成立:
metric space $(A,d)$ 為 compact (亦即:對任意 open cover 存在 有限 subcover of $A$。)
==========================
==========================
Definition: Relatively Compact集合 $A \subset X$ 稱為 relatively compact 若下列條件成立
\[
\bar A \subset X \text{ is compact}
\]上述 $\bar{A}$ 表示 closure of $A$
==========================
==========================
Theorem: Heine-Borel Theorem若 $A \subset \mathbb{R}^n$ (或者 $\mathbb{C}^n$) 為 closed + bounded 則 $A$ 為 compact。
==========================
==========================
Definition: Sequentially Compact我們說一個 metric space $(X,d)$ 為 sequentially compact 若下列條件成立
對任意 sequence in $X$ 存在 收斂 subsequence 。
==========================
==========================
Definition: Totally Bounded一個 metric space $(X,d)$ 稱為 totally bounded 若下列條件成立:
對任意 $\varepsilon>0$,存在有限個 以半徑為 $\varepsilon$ 的 open Ball $\mathcal{B}_\varepsilon$ 所組成的集合 並且 covers $X$。
==========================
考慮 $l^p$ space $:= \{\{a_n\}_n: \sum_{n}^\infty |a_n|^p < \infty, 0 <p <\infty\}$;且定義 metric 如下
\[d\left( {{a_n},{b_n}} \right): = {\left( {\sum\limits_{n = 1}^\infty {|{a_n} - {b_n}{|^p}} } \right)^{\frac{1}{p}}}\]
Question: 試定義 半徑為1 且球心為 $\{0,0,0,...\}$ 的 open ball $\mathcal{B} \in l^p$:
ANS:\[
\mathcal{B}: = \left\{ {{{\left\{ {{a_n}} \right\}}_{n \in \mathbb{N}}}:\sum\limits_{n = 0}^\infty {{{\left| {{a_n}} \right|}^p} < 1} } \right\}
\]
現在定義 example element in $l^p$
\[\left\{ {{e_n}^{\left( k \right)}} \right\}: = \left\{ \begin{array}{l}
0,\begin{array}{*{20}{c}}
{}
\end{array}n \ne k\\
1,\begin{array}{*{20}{c}}
{}
\end{array}n = k
\end{array} \right.
\]舉例而言,若 $k=1$ 則 上述定義表示 $e_n^{(1)} = \{1, 0, 0, 0,...\}$ 若 $k=2$ 則上述定義表示 $e_n^{(2)} = \{0, 1, 0, 0,...\}$
注意到
1. $\{e_n^{(k)}\} \in \mathcal{\bar{B}}$
2. 且 example element 的 距離 (metric, $d$) 為 \[d({e^{(k)}},{e^{(m)}}) = {\left( {\sum\limits_{n = 0}^\infty {{{\left| {e_n^{(k)} - e_n^{\left( m \right)}} \right|}^p}} } \right)^{\frac{1}{p}}} = {2^{\frac{1}{p}}}\]
Question: 試問 $ \mathcal{\bar{B}}$ 是否為 totally bounded?
NO! 亦即 存在 $\varepsilon>0$,使得 沒有 有限的 collection of open balls covers $X$
取 $\varepsilon < 1/2^p$ 則可證明 沒有有限的 collection of open balls covers $X$。
以下我們看個 totally bounded 的結果
=============
FACT: 若 $X$ 為 totally bounded metric space,則 $X$ 具有 countable 且 dense 的子集合 (亦即 $X$ 中存在 separable 的子集合)。
=============
Proof:
此為存在性的定理,我們要找出 一個 $X$ 的子集合 滿足 countable 與 dense。
首先由於 $X$ 為 totally bounded metric space,由定義可知 對任意 $\varepsilon >0$, 存在有限個 由半徑為 $\varepsilon>0$ 的 open ball $\mathcal{B}$ 所組成 的 cover of $X$。故對任意 $n \in \mathbb{N}$ 我們選 $\varepsilon_n:=1/n$,並且令有限個點 $x_1,...x_n \in X$,則由 toally boundedness of $X$ 我們可建構集合
\[
A_n := \{x_1, x_2,...,x_n\}
\] 使得 $X \subset \cup_i^n \mathcal{B}(x_i) $。那麼若我們現在令
\[
A:= \cup_n A_n
\] 則此集合 $A \subset X$ 且為 countable。
接著我們證集合 $A$ 為 dense。亦即要證明 :
對任意 $z \in X$,存在一組 sequence $\{z_n\} \in A$ 使得 $z_n \rightarrow z$。
現在給定任意 $z \in X$ ,則由 totally boundedness 我們可知必定存在 一個 點 $z_n \in A$ 使得 $d(z_n, z) < 1/n$ ,故對任意 $n \in \mathbb{N}$ 我們可建構一組 sequence $\{z_n\}$ 滿足
\[
\lim_{n \rightarrow \infty} d(z_n,z) =0
\]亦即 $z_n \rightarrow z$。
===================
Lemma 1: 任意 closed subset $F$ of compact metric space $X$ 必為 compact。
Proof: omitted.
===================
===================
Lemma 2: 任意 在 $X$ 中的無窮集合 必有 accumulation point 若且為若 $X$ 為 sequentially compact。===================
現在取 $\{p_n\}$ 為 $X$ 中任意 sequence。 將此 $\{p_n\} $ 中的元素形成集合 $A \subset X$ 且考慮以下兩種情況:
1.若 集合 $A$ 中元素為有限個,則 $\{p_n\}$ sequence 中 必定存在一點為重複出現無限次,則我們可取此點為形成 constant subsequence。
2. 若 集合 $A$ 中元素為無限個,亦即 $\{p_n\}$ 為無限個相異元素;由 假設可知
"任意 在 $X$ 中的無窮集合 必有 accumulation point "
$A$ 為 $X$ 中的無窮集合,必有 accumulation point ,此等價為 $\{p_n\}$ 具有收斂子數列。
$(\Leftarrow)$ 假設 $X$ 為 sequentially compact,要證明 任意 在 $X$ 中的無窮集合 必有 accumulation point。
令 $A \subset X$ 為無窮集合,我們要證 $A$ 必有 accumulation point。
我們取 $\{a_n\} \subset A$ 為 sequence,則由於 $X$ 為 sequentially compact,故可知給定任意sequence in $X$,必有收斂子數列。此等價為 $A$ 必有 accumulation point。
令 $A \subset X$ 為無窮集合,我們要證 $A$ 必有 accumulation point。
我們取 $\{a_n\} \subset A$ 為 sequence,則由於 $X$ 為 sequentially compact,故可知給定任意sequence in $X$,必有收斂子數列。此等價為 $A$ 必有 accumulation point。
===================
Lemma 3: 若 $X$ 為 compact,則 $X$ 為 sequentially compact。===================
Proof:
要證 $X$ 為 sequentially compact;可由 Lemma 2 我們證 任意 在 $X$ 中的無窮集合 必有 accumulation point 。
利用歸謬法(Proof by contradiction):假設 $X$ 為 compact,且存在一個 $X$ 中的無窮集合,但此集合並沒有 accumulation point 。我們要證矛盾。
故現在令 $Y \subset X$ 為此 無窮集合 (沒有 accumulation point)。則由於 $Y$ 並沒有 accumulation point ,我們可推知 對任意 $y \in Y$,存在適當的半徑 $r>0$ 使得開球 $B_r(y)$ 與 $Y$ 的交集
\[B_r(y) \cap Y = \{y\}
\] 且由於 $Y$ 無 accumulation point,我們亦另外推知 $Y$ 為 closed。 ($Y$ is closed iff its contains all its accumulation point,但由於 $Y$ 並無 accumulation point,故 $Y$ 為 closed。)
由於 $X$ 為 compact,且 $Y \subset X$ 為 closed,由 Lemma 1 可知 $Y$ 亦為 compact。
對任意 $y$,我們確實可透過 $B_r(y)$ 來 cover $Y$ (透過 $ B_r(y) \cap Y = \{y\}$ ) 故由 compactness of $Y$ 可知必定存在有限個 subcover 來蓋住 $Y$。但此與 $Y$ 為無窮集合 矛盾。 $\square$
現在我們回憶 totally bounded
==========================
Definition: Totally Bounded一個 metric space $(X,d)$ 稱為 totally bounded 若下列條件成立:
對任意 $\varepsilon>0$,存在有限個 以半徑為 $\varepsilon$ 的 open Ball $\mathcal{B}_\varepsilon$ 所組成的集合 並且 covers $X$。
==========================
Definition: 一個集合 $A$ 為 $\varepsilon$-net for space $X$ 若下列條件成立:
$A$ 為 finite set 且對 $x \in A$,開球 $B_\varepsilon(x)$ 建構一個 open cover of $X$。
現在我們給出等價定義: 我們說 $A$ is totally bounded 若 對任意 $\varepsilon>0$ 而言,我們有 $\varepsilon$-net。
Claim: 若 $X$ 為 sequentially compact,則 集合 $A \subset X$ 滿足 $p,q \in A, p \neq q$ 且 $d(p,q) \ge \varepsilon$ 為 有限集。
proof:
Lemma 4: 一個 sequentially compact 的 metric space $X$ 為 totally bounded + complete。
Proof:
先證 totally bounded。給定 $\varepsilon$,要建構 一個 $\varepsilon$-net。
現在令 $A \subset X$ 為一集合 滿足其中的元素之間互相之距離大於 $\varepsilon$,由 Claim 可知此集合 $A$ 為 有限集合,故對任意點 $p_i \in A$ 則我們可對每一個 $i$,建構一開球 $B_\varepsilon(p_i)$ 且此開球確實 蓋住 $X$。
亦即我們確實建構出 $\varepsilon$-net for $X$ 故 $X$ 為 totally bounded。$\square$
接著我們證 $X$ 為 complete:亦即給定任意 Cauchy sequence $\{x_n\} \subset X$ 要證明 此 $\{x_n\}$ 收斂在 $X$ 上。
由於 $X$ 為 sequentially compact ,故此 $\{x_n\}$ 具有收斂子數列 $\{x_{n_k}\}$在 $X$ 上。稱其極限為 $l$ 現在觀察 對足夠大的 $N$ 使得當 $n,n_k \ge N$ 我們有
\[\begin{array}{l}
\left| {{x_n} - l} \right| = \left| {{x_n} - {x_{{n_k}}} + {x_{{n_k}}} - l} \right|\\
\begin{array}{*{20}{c}}
{}&{}&{}&{}
\end{array} \le \left| {{x_n} - {x_{{n_k}}}} \right| + \left| {{x_{{n_k}}} - l} \right|\\
\begin{array}{*{20}{c}}
{}&{}&{}&{}
\end{array} < \varepsilon /2 + \varepsilon /2 < \varepsilon
\end{array}\]故$X$ 為 complete。 $\square$
沒有留言:
張貼留言