9/27/2015

[自動控制] 穩態誤差與特性方程反求 轉移函數問題

考慮單位回授控制系統如下圖


現在假設
1. 閉迴路系統對 單位步階訊號 的穩態誤差為零:
2. 閉迴路轉移函數 $Y(s)/R(s)$ 的特性方程式為 $s^3 + 4s^2 + 6s +4$

試決定 $G(s)$

Solution:
首先決定誤差轉移函數 $E(s)$ 並將其以 $G(s)$ 與 $R(s)$ 表示:由於 $Y(s) = G(s)E(s)$ 且 $E(s) = R(s) - Y(s)$ 我們可推得
\[
E(s) = R(s) - Y(s) = R(s) - G(s) E(s)
\]故
\[
E(s) = \frac{R(s)}{1 + G(s)}
\]
現在令 $G(s) := \frac{n(s)}{d(s)}$ 則
\[E(s) = \frac{{R(s)}}{{1 + G(s)}} = \frac{{R(s)}}{{1 + \frac{{n\left( s \right)}}{{d\left( s \right)}}}} = \frac{{d\left( s \right)}}{{d\left( s \right) + n\left( s \right)}}R(s)
\]故由條件 2 可知
\[
d(s) + n(s) = s^3 + 4s^2 + 6s +4
\]
接著由條件1可知此閉迴路系統對 單位步階訊號 的穩態誤差為零:亦即 $\mathop {\lim }\limits_{s \to 0} sE(s) = 0$,故取 $R(s) = 1/s$ 為單位步階訊號,我們有
\[\mathop {\lim }\limits_{s \to 0} s\frac{{d\left( s \right)}}{{d\left( s \right) + n\left( s \right)}}\frac{1}{s} = \mathop {\lim }\limits_{s \to 0} \frac{{d\left( s \right)}}{{d\left( s \right) + n\left( s \right)}} = 0\]或者
\[\mathop {\lim }\limits_{s \to 0} \frac{{d\left( s \right)}}{{{s^3} + 4{s^2} + 6s + 4}} = 0
\]且注意到轉移函數必須為真分形式 亦即至少分母階數要大於或等於分子階數,故我們可取
\[
d(s) = s^3 + 4s^2 + 6s
\]作為其中一種選擇。至此我們已經決定 $d(s)$ 又因為 $d(s) + n(s) = s^3 + 4s^2 + 6s + 4$,以上例而言,$n(s) = 4$。故我們得到
\[
G(s) = \frac{n(s)}{d(s)} =  \frac{4}{s^3 + 4s^2 + 6s}
\]

沒有留言:

張貼留言

[隨筆] A+焦慮的世代

接住A+世代學生 當了老師之後發現要"接住"學生確實不容易,撇開老師自身可能也有需要被接住的問題不談。我這幾年常常感受到這世代的學生們有著很大的徬徨,不太清楚未來的方向,但是卻有著非得要拿到A/A+不可的糾結,於是課優先選甜涼課,實習競賽投好投滿。好像看著同學...