跳到主要內容

[線性代數] 線性算子 與 特徵值/特徵向量(0)

======================
Definition: Linear Operator
令 $V$ 為 $n$ 維 向量空間 且 $L: V \to V$ 為線性轉換 (Linear transformation):亦即給定任意兩向量 ${\bf u,v} \in V$ 與 $c \in \mathbb{R}$ (or $c \in \mathbb{C}$)滿足
\[\begin{array}{l}
L\left( {{\bf{u}} + {\bf{v}}} \right) = L\left( {\bf{u}} \right) + L\left( {\bf{v}} \right)\\
L\left( {c{\bf{u}}} \right) = cL\left( {\bf{u}} \right)
\end{array}\]則我們稱該 $L:V \to V$ 為定義在 $V$ 上的線性算子 (Linear Operator)
======================

那麼我們現在想問一個基本問題:是否可以找到 一組非零向量 ${\bf v} \neq {\bf 0}$ 與 純量 $\lambda \in \mathbb{R}$ (or $\in \mathbb{C}$) 使得
\[
L({\bf v}) = \lambda{\bf v}
\]
此問題在工程領域有諸多應用,一般而言上述問題又稱為特徵值問題。

Comments:
1. 上述討論中所提及的 Linear Operator 僅僅表示 domain 與 codomain 都為同一個向量空間 $V$,其餘皆與線性轉換定義相同。也就是說若我們將 domain $V$ 與 codomain $W$ 設為不同的向量空間,且若 $L: V \to W$ 滿足
\[\begin{array}{l}
L\left( {{\bf{u}} + {\bf{v}}} \right) = L\left( {\bf{u}} \right) + L\left( {\bf{v}} \right)\\
L\left( {c{\bf{u}}} \right) = cL\left( {\bf{u}} \right)
\end{array}\]則我們稱 $L$ 為線性轉換 (Linear Transformation)。

2. 若 ${\bf v} = {\bf 0}$ 則 $L({\bf v}) = \lambda{\bf v}$ 自動滿足故我們只需關心 ${\bf v} \neq {\bf 0}$ 的情況
3. 注意到若 $V:= \mathbb{R}^n$ 或者複數向量空間 $V= \mathbb{C}^n$ 則我們可從幾何觀點來看上述特徵值問題,則此問題變成決定是否 $L({\bf v})$ 與 ${\bf v}$ 平行。
4. 給定任意線性算子 $L: V \to V$ ,其(實數)特徵值與其對應的特徵向量不一定存在,比如說考慮 旋轉轉換 $L: \mathbb{R}^2 \to \mathbb{R}^2$ 滿足
\[L\left( {\left[ \begin{array}{l}
{x_1}\\
{x_2}
\end{array} \right]} \right) = \left[ {\begin{array}{*{20}{c}}
{\cos \theta }&{ - \sin \theta }\\
{\sin \theta }&{\cos \theta }
\end{array}} \right]\left[ \begin{array}{l}
{x_1}\\
{x_2}
\end{array} \right]\]其中 $0 < \theta < \pi$ 則此算子為線性算子但不存在(實數)特徵值與特徵向量。但存在 (複數)特徵值與複數特徵向量

Example 1:
令 Linear operator $L : \mathbb{R}^2 \to \mathbb{R}^2$ 滿足
\[L\left( {\bf{v}} \right) = L\left( {\left[ \begin{array}{l}
{v_1}\\
{v_2}
\end{array} \right]} \right): = \left[ \begin{array}{l}
{v_1}\\
 - {v_2}
\end{array} \right]\]試求 ${\bf v} \neq {\bf 0}$ 與 $\lambda$ 使得 $L({\bf v}) = \lambda {\bf v}$?

Solution
觀察
\[L\left( {\bf{v}} \right) = L\left( {\left[ \begin{array}{l}
{v_1}\\
{v_2}
\end{array} \right]} \right): = \left[ \begin{array}{l}
{v_1}\\
 - {v_2}
\end{array} \right]\]因為我們要求 $L({\bf v}) = \lambda {\bf v}$ 故
\[\begin{array}{*{20}{l}}
{\left[ {\begin{array}{*{20}{l}}
{{v_1}}\\
{ - {v_2}}
\end{array}} \right] = \lambda \left[ {\begin{array}{*{20}{l}}
{{v_1}}\\
{{v_2}}
\end{array}} \right]}\\
{ \Rightarrow \lambda \left[ {\begin{array}{*{20}{l}}
{{v_1}}\\
{{v_2}}
\end{array}} \right] - \left[ {\begin{array}{*{20}{l}}
{{v_1}}\\
{ - {v_2}}
\end{array}} \right] = {\bf{0}}}\\
{ \Rightarrow \left[ {\begin{array}{*{20}{c}}
{\lambda  - 1}&0\\
0&{\lambda  + 1}
\end{array}} \right]\left[ {\begin{array}{*{20}{l}}
{{v_1}}\\
{{v_2}}
\end{array}} \right] = \left[ {\begin{array}{*{20}{l}}
0\\
0
\end{array}} \right]}
\end{array}\]由上式可知我們在決定 $\lambda$ 使得並求解 Null Space of ${\left[ {\begin{array}{*{20}{c}}
{\lambda  - 1}&0\\
0&{  \left( {\lambda  + 1} \right)}
\end{array}} \right]}$ 故若我們選 $\lambda := \lambda_1 = 1 $ 則對應的 ${\bf v}_1 = [s\;\;0]^T$ 其中 $s \in \mathbb{R}^1$。

另外若選 $\lambda := \lambda_2 = -1$ 則對應的 ${\bf v}_2 = [0\;\;t]$ 其中 $t \in \mathbb{R}^1$。 $\square$


由上述討論所求出的 $\lambda$ 與 ${\bf v}$ 即為所謂特徵值與特徵向量,現在我們引入 eigenvalue 與 eigenvector 定義


======================
Definition:  Eigenvalue and Eigenvector
令 $V$ 為 $n$ 維度向量空間且 $L: V \to V$ 為定義在 $V$ 上的 線性算子。我們稱 $\lambda$ 為 $L$ 的特徵值( eigenvalue of $L$) 若存在一組非零向量 ${\bf x} \in V$ 使得
\[
L({\bf x}) = \lambda {\bf x}
\]且 任意非零向量 ${\bf x}$ 滿足上式稱為 $L$ 對應於特徵值 $\lambda $ 的特徵向量 (eigenvector of $L$ associated with the eigenvalue $\lambda$)
======================

Remark: 
1. 上述定義中的純量 $\lambda$ 與向量 ${\bf x}$皆可為 實數或者複數。有興趣的讀者請看 Example 2
2. 若我們允許 ${\bf x} = {\bf 0}$ 則 任意 $\lambda$ 都可為 eigenvalue 因為
\[
L({\bf x}) = \lambda {\bf x} \Rightarrow L({\bf 0}) = \lambda {\bf 0}
\]則任何 $\lambda$ 都滿足上式。
3. 事實上特徵值與特徵向量在無窮維向量空間 亦可被定義,有興趣讀者請看 Example 3


===================
Fact: 令 $L:V\to V$ 為線性算子,若 ${\bf x}$ 為 eigenvector of $L$ associated with the eigenvalue ${\lambda}$ 則 對任意實數 $c \in \mathbb{R}^1$ 我們有
\[
L(c {\bf x}) = \lambda (c {\bf x})
\]===================

Proof:
由於 ${\bf x}$ 為 eigenvector of $L$ associated with the eigenvalue ${\lambda}$ 我們有 對任意非零向量 ${\bf x} \neq {\bf 0}$
\[
L({\bf x}) = \lambda ({\bf x})
\] 現在觀察
\[\begin{array}{l}
L(c{\bf{x}}) = cL({\bf{x}})\\
\begin{array}{*{20}{c}}
{}&{}
\end{array} = c\left( {\lambda {\bf{x}}} \right)\\
\begin{array}{*{20}{c}}
{}&{}
\end{array} = \lambda \left( {c{\bf{x}}} \right)
\end{array}\]讀者應注意到上述第一條等式應用 $L$ 為線性算子的性質。$\square$


以下我們用一個例子來說明何時會發生複數的 eigenvalue $\lambda$ 與 負數特徵向量 ${\bf x}$

Example 2:
考慮線性算子 $L: \mathbb{R}^2 \to \mathbb{R}^2$ 滿足
\[L\left( {\left[ \begin{array}{l}
{x_1}\\
{x_2}
\end{array} \right]} \right) = \left[ \begin{array}{l}
 - {x_2}\\
{x_1}
\end{array} \right]\]試求 eigenvalue of $L$ 與對應的 eigenvector

Solution
回憶前述定義,線性算子 $L$ 的特徵值 $\lambda$ 必須滿足 $L\left( {\bf{x}} \right) = \lambda {\bf{x}}$ 故現在觀察
\[\begin{array}{l}
L\left( {\bf{x}} \right) = \lambda {\bf{x}}\\
 \Rightarrow L\left( {\left[ \begin{array}{l}
{x_1}\\
{x_2}
\end{array} \right]} \right) = \left[ \begin{array}{l}
 - {x_2}\\
{x_1}
\end{array} \right] = \lambda \left[ \begin{array}{l}
{x_1}\\
{x_2}
\end{array} \right]\\
 \Rightarrow \lambda \left[ \begin{array}{l}
{x_1}\\
{x_2}
\end{array} \right] - \left[ \begin{array}{l}
 - {x_2}\\
{x_1}
\end{array} \right] = \left[ \begin{array}{l}
0\\
0
\end{array} \right]\\
 \Rightarrow \left[ {\begin{array}{*{20}{c}}
\lambda &1\\
{ - 1}&\lambda
\end{array}} \right]\left[ \begin{array}{l}
{x_1}\\
{x_2}
\end{array} \right] = \left[ \begin{array}{l}
0\\
0
\end{array} \right]
\end{array}\]觀察上述線性系統方程,求解 Null Space of $\left[ {\begin{array}{*{20}{c}}
\lambda &1\\
{ - 1}&\lambda
\end{array}} \right]$ 可得到以下結果:

若 $\lambda = \lambda_1 = i$ 則對應的特徵向量可透過將 $\lambda = \lambda_1$ 帶回上述線性系統方程並求解 ${\bf x}_1$ 如下 \[
{\bf x}_1 = s[i \;\; 1]^T,\;\; \forall s \in \mathbb{R}^1
\]
若 $\lambda = \lambda_i =-i$ 則對應的特徵向量可透過將 $\lambda = \lambda_2$ 帶回上述線性系統方程並求解 ${\bf x}_2$ 如下
\[
{\bf x}_2 = t[-i \;\; 1]^T,\;\; \forall t \in \mathbb{R}^1
\]
注意到上述結果之中,$L$ 的 特徵值皆為複數:亦即 $\lambda_{i} \in \mathbb{C}$ 對任意 $i=1,2$ 且對應的特徵向量亦為 $\mathbb{C}^2$ 複數向量。且這表示原本題目之中要求 $L: \mathbb{R}^2 \to \mathbb{R}^2$ 並無法找到對應的複數向量除非我們更改 domain 與 codomain 使其變成 $\mathbb{C}^2$


Example 3: Eigenvalue Problem in Function Space
考慮 $V:=C^\infty (\mathbb{R})$ 亦即 $V$ 為所有 單變數實數函數所成的向量空間 且我們假設其上的函數任意階導數存在。現在令 $L: V \to V$ 為線性算子滿足
\[
L(f) := f'
\]
則我們想問是否可找到 常數 $\lambda$ 與 函數 $f \neq 0$ 且 $f \in V$ 使得 $L(f) = \lambda f$ 成立?

 Solution
令 $f \in V$ 為單變數函數,注意到 $L(f) = f'$ 為線性算子(why?),現在觀察 $L(f) = f' = \lambda f $ 亦即 我們要找出 $\lambda$ 與對應的 $f \neq 0, f \in V$ 滿足
\[
f' = \lambda f
\] 由於我們要找的 $f$ 必須無窮維導數存在 且一次導數必須滿足 $f' = \lambda f$,故我們猜 $f(t) = e^{\lambda t}$ 則
\[\frac{d}{{dt}}\left( {{e^{\lambda t}}} \right) = \lambda {e^{\lambda t}} = \lambda f\left( t \right)\]故現在我們找到一組 $f$ 滿足該方程,但是否有其他人選?答案是肯定的,比如說我們改令
\[
f(t) = K e^{\lambda t}
\]仍為該方程 $f' = \lambda f$ 的解 (讀者可自行驗證),因此我們有以下結果,對任意 特徵值 $\lambda \in \mathbb{R}^1$,其特徵向量 $f(t) = K e^{\lambda t} $ 其中 $K$ 為任意非零常數。$\square$

Comment:
1. 上述例子中顯示微分方程 $f' = \lambda f$ 的解 $f(t) = exp(\lambda t)$ 剛好為該 $L(f) = f'$ 的對應於特徵值 $\lambda$ 的特徵向量。

2. 若我們只關心 $f>0$ 上述微分方程可直接求解不必猜測,解法如下:
\[\begin{array}{l}
f' = \lambda f\\
 \Rightarrow \frac{{df\left( t \right)}}{{dt}} = \lambda f\left( t \right)\\
 \Rightarrow \frac{{df\left( t \right)}}{{f\left( t \right)}} = \lambda dt\\
 \Rightarrow \int {\frac{1}{{f\left( t \right)}}df\left( t \right)}  = \int {\lambda dt} \\
 \Rightarrow \log f\left( t \right) + C = \lambda t + D\\
 \Rightarrow f\left( t \right) = {e^{\lambda t}}{e^{D-C}}: = K{e^{\lambda t}}
\end{array}\]

留言

  1. https://userdisk.webry.biglobe.ne.jp/020/691/47/N000/000/007/155428072189143651179.gif

    回覆刪除

張貼留言

這個網誌中的熱門文章

[分享] 台灣國內免費開放式課程推薦

近幾年由MIT開啟的開放式課程風潮 (MIT-OCW),可以說是讓國內外各大學都開始思考未來教育方式與開放式課程的之間的連結。也使得許多大型開放式課程(Massive open online course, Mooc)聯盟建立起各自的一片天地,比如個人最為推薦的 CourseraedX (目前世界最具規模的跨校大型開放式課程,由全球各個頂尖大學提供線上課程供學生免費學習的網路平台,具備線上評分/繳交作業/考試/表現完整可以得到修業證書的系統)。

不過慶幸的是,其實台灣也提供了非常多相當相當棒的開放式課程(OCW/Mooc),可以讓大家自由而且免費的線上學習,除了免除了語言上的隔閡,也讓以往沒有機會好好學習的人 (ex: 我),有機會透過網路重拾書本,進入大學殿堂再次充電。在這邊跟大家介紹幾個,我個人常去瀏覽的國內開放式課程,
交大開放式課程 (理/工/電資學院課程豐富完整,且有豐富的產/官/學/界各領域人士演講)台大開放式課程 (大量通識類/文史哲課程)清大開放式課程 (自然科學/工程科學課程豐富)台灣開放式課程聯盟 (統合各校開放式課程的總站)ewant 育網開放教育平台 (台灣/大陸交大與台灣其他學校合開課程)台灣均一教育平台 (參考國外可汗學院 (Khan Academy) 設計的互動學習網站,有許多豐富的國小/國中高中/的數理科課程:尤其以數學最為完整。)
另外在此推薦自己上過的幾門課程,因為個人是理工背景,推薦的課程多偏向理工科,但也有相當多文史哲課程都非常豐富且有趣,老師們也都教得很棒,收穫很多,在此分享給大家

==============
數理類 大學部課程:

微積分 
交大OCW: 微積分 I, II - 莊重 教授 清大OCW: 微積分 I, II - 高淑蓉 教授 (高老師的微積分風格嚴謹,整體課程頗有高微的味道,個人非常欣賞)清大OCW: 高等微積分 I - 高淑蓉 教授 ewant :  微積分 - 政大 蔡炎龍 教授 (適合微積分初學者,課程採用 互動數學軟體 Geogebra )台大OCW: 高等微積分 - 陳金次 教授台大OCW: 微積分I ,II  - 齊震宇 教授 ( 適合主修數學的學生,適合微積分初學者)台大OCW: 分析 I, II - 齊震宇 教授線性代數 交大OCW: 線性代數 I, II -莊重 教授
(莊老師講授非常清楚,…

[數學分析] 淺談各種基本範數 (Norm)

這次要介紹的是數學上一個重要的概念:

Norm:一般翻譯成範數
(在英語中 norm 有規範的意思,比如我們說normalization就是把某種東西/物品/事件 做 正規化,也就是加上規範使其正常化),不過個人認為其實翻譯成 範數 也是看不懂的...這邊建議把 Norm 想成長度就好 (事實上norm是長度的抽象推廣),

也許讀者會認為好端端的長度不用,為何又要發明一個 norm 來自討苦吃?? 既抽象又艱澀。

事實上想法是這樣的:
比如說現在想要比較兩個數字 $3$ , $5$ 之間的大小,則我們可以馬上知道 $ 3 < 5 $;同樣的,如果再考慮小數與無理數如 $1.8753$ 與 $\pi$,我們仍然可以比較大小 $1.8753 < \pi = 3.1415...$ 故可以發現我們有辦法對 "純量" 做明確的比大小,WHY? 因為前述例子中 $3$, $5$, $1.8753$ or $\pi$ 其各自的大小有辦法被 "measure "!

但是如果是現在考慮的是一組數字 我們如何去measure 其大小呢?? 比如說
\[x:=[1, -2, 0.1, 0 ]^T
\]上式的大小該是多少? 是 $1$? $-2$? $0.1$???
再者如果更過分一點,我們考慮一個矩陣
\[A = \left[ {\begin{array}{*{20}{c}}
1&2\\
3&4
\end{array}} \right]
\],想要知道這個矩陣的大小又該怎麼辦?? 是 $1$ ? $2$ 還是 $4$ ?..其實現階段我們說不清楚。

也正是如此,可以發現我們確實需要新的 "長度" 的定義來幫助我們如何去 measure 矩陣/向量/甚至是函數的大小。

故此,我們首先定義甚麼是Norm,(也就是把 "長度" or "大小" 的本質抽離出來)

==================
Definition: Norm
考慮 $V$ 為一個向量空間(Vector space),則我們說  Norm 為一個函數 $||\cdot|| : V \rightarrow \mathbb{R}$ 且滿足下列性質:

(a) $||v|| \geq 0$, $||v||=…