跳到主要內容

[微分方程] 人口增長模型

考慮以下初始值問題
\[
\frac{dy}{dt} = ky - cy^2, \;\; y(0) = A \in \mathbb{R}
\]上述微分方程用以描述 具備外在競爭關係 $(-cy^2)$ 的 (人口)成長模型 $(ky)$。一般稱之為 Logistic Equation of Population Growth

Comments:
1. 上述 Logistic Equation 具備 $y' = f(y)$ 形式,其中 $f(y) := ky - cy^2$ ,亦即函數 $f$ 僅與 $y$ 有關而無直接與時間 $t$相關,我們稱此類微分方程為 autonomous equation。


現在我們開始求解 Logistic Equation

Solution:
令 $\phi(t) \neq 0$ 為上述 IVP 在某區間 $I$ 包含 $t=0$ 的解,則在此區間 $I$ 上,我們有
\[
\phi '\left( t \right) = k\phi \left( t \right) - c{\phi ^2}\left( t \right) \;\;\;\;\; (*)
\]注意到儘管上式為非線性,但其具備分離變數形式,故若
\[\begin{array}{l}
k\phi \left( t \right) - c{\phi ^2}\left( t \right) \ne 0\\
 \Rightarrow \left( {k - c\phi \left( t \right)} \right)\phi \left( t \right) \ne 0
\end{array}
\]亦即 $\phi \left( t \right) \ne 0 $ 且 ${k - c\phi \left( t \right)} \neq 0$(或者等價 $\phi(t) \neq k/c$) 則我們可以將 $(*)$ 改寫為
\[\begin{array}{l}
\phi '\left( t \right) = k\phi \left( t \right) - c{\phi ^2}\left( t \right)\\
 \Rightarrow \frac{{\phi '\left( t \right)}}{{k\phi \left( t \right) - c{\phi ^2}\left( t \right)}} = 1
\end{array}
\]對上式兩邊同積分從 $0$ 到 $t$ 可得
\[\int_0^t {\frac{{\phi '\left( s \right)}}{{k\phi \left( s \right) - c{\phi ^2}\left( s \right)}}ds}  = \underbrace {\int_0^t 1 dt}_{ = t}
\]現在令變數變換 $u:= \phi(s)$ 且使用初始條件 $\phi(0) = A$ 我們可將上述積分改寫如下
\[\begin{array}{l}
\int_A^{\phi \left( t \right)} {\frac{1}{{ku - c{u^2}}}} du = t\\
 \Rightarrow \int_A^{\phi \left( t \right)} {\frac{1}{{u\left( {k - cu} \right)}}} du = t \;\;\; (**)
\end{array}
\]注意到左式被積函數可透過部分分式展開如下
\[\frac{1}{{u\left( {k - cu} \right)}} = \frac{C}{u} + \frac{D}{{k - cu}}
\]其中 $C = 1/k$ 且 $D =c/k$ 故 $(**)$ 式子改寫為
\[\begin{array}{l}
\frac{1}{k}\int_A^{\phi \left( t \right)} {\frac{1}{u}} du + \frac{c}{k}\int_A^{\phi \left( t \right)} {\frac{1}{{k - cu}}} du = t\\
 \Rightarrow \frac{1}{k}\left( {\ln \left| {\phi \left( t \right)} \right| - \ln |A|} \right) + \left( {\frac{1}{{ - k}}} \right)\left( {\ln \left| {k - c\phi \left( t \right)} \right| - \ln \left| {k - cA} \right|} \right) = t\\
 \Rightarrow \frac{1}{k}\left( {\ln \left| {\frac{{\phi \left( t \right)}}{A}} \right|} \right) - \frac{1}{k}\left( {\ln \left| {\frac{{k - c\phi \left( t \right)}}{{k - cA}}} \right|} \right) = t\\
 \Rightarrow \frac{1}{k}\ln \left| {\frac{{\phi \left( t \right)\left( {k - cA} \right)}}{{A\left( {k - c\phi \left( t \right)} \right)}}} \right| = t
\end{array}
\]由上述結果不難求解 $\phi(t)$ 如下
\[\begin{array}{l}
\phi \left( t \right) = \frac{{kA{e^{kt}}}}{{\left( {k - cA} \right) + cA{e^{kt}}}}\\
 \Rightarrow \phi \left( t \right) = \frac{{kA}}{{\left( {k - cA} \right){e^{ - kt}} + cA}}
\end{array}\]自此我們求解完畢,讀者可自行驗證上述解 $\phi(t)$ 確實滿足 Logistic Equaiton 與初始條件。

Comments:
1. 若 $c = 0$,我們可得
\[{\left. {\phi \left( t \right)} \right|_{c = 0}} = {\left. {\frac{{kA}}{{\left( {k - cA} \right){e^{ - kt}} + cA}}} \right|_{c = 0}} = A{e^{kt}}\]亦即滿足 $y' = ky$ 之解。

2. 若 $c \neq 0$ 且 $A \neq 0$ 則我們可推得系統其中的一個穩態解
\[\mathop {\lim }\limits_{t \to \infty } \phi \left( t \right) = \mathop {\lim }\limits_{t \to \infty } \frac{{kA}}{{\left( {k - cA} \right){e^{ - kt}} + cA}} = \frac{k}{c}\]
3. 若 初始條件 $y(0) = A = 0$ 則 $\phi(t) = 0$ 為第二個穩態解

4. 一般我們稱邏輯函數 (Logistic Function) 為
\[L\left( t \right) = \frac{1}{{1 + {e^{ - t}}}}\]讀者可驗證其函數圖形具有 $S$ 形。現在注意到我們上述所求得的解 $\phi(t)$ 形式具備此邏輯函數的形式,故其 ODE
\[
\frac{dy}{dt} = ky - cy^2
\]我們稱其為 Logistic Equation (of Population Growth)

留言

這個網誌中的熱門文章

[數學分析] 什麼是若且唯若 "if and only if"

數學上的 if and only if  ( 此文不討論邏輯學中的 if and only if,只討論數學上的 if and only if。) 中文翻譯叫做  若且唯若 (or 當且僅當) , 記得當初剛接觸這個詞彙的時候,我是完全不明白到底是甚麼意思,查了翻譯也是愛莫能助,畢竟有翻跟沒翻一樣,都是有看沒有懂。 在數學上如果看到 if and only if  這類的句子,其實是表示一種 雙條件句 ,通常可以直接將其視為" 定義(Definition)" 待之,今天要分享的是這樣的一個句子如何用比較直觀的方法去看他 假設我們現在有 兩個邏輯陳述句 A 與  B. 注意到,在此我們不必考慮這兩個陳述句到底是什麼,想表達什麼,或者到底是否為真(true),這些都不重要。只要知道是兩個陳述即可。 現在,考慮新的陳述:  "A if and only if B" 好了,現在主角登場,我們可以怎麼看待這個句子呢? 事實上我們可以很直覺的把這句子拆成兩部分看待,也就是 "( A if B ) and ( A only if B )" 那麼先針對第一個部分  A if B  來看, 其實這句就是說  if B then A, 更直白一點就是 "if B is true, then A is also true".  在數學上等價可以寫為 "B implies A" .  或者更常用一個箭頭符號來表示 "B $\Rightarrow$  A"  現在針對第二個部分  A only if B 此句意指  "If B is not true, then A is also not true". 所以如果已知 A is true,  那麼按照上句不難推得 B is also true 也就是說  A only if B  等價為 "If A is true then B is also true". 同樣,也可以寫作   "A implies B"   或者用箭頭表示  "A   $\Rightarrow$     B".

[數學分析] 淺談各種基本範數 (Norm)

這次要介紹的是數學上一個重要的概念: Norm: 一般翻譯成 範數 (在英語中 norm 有規範的意思,比如我們說normalization就是把某種東西/物品/事件 做 正規化,也就是加上規範使其正常化),不過個人認為其實翻譯成 範數 也是看不懂的...這邊建議把 Norm 想成長度就好 (事實上norm是長度的抽象推廣), 也許讀者會認為好端端的長度不用,為何又要發明一個 norm 來自討苦吃?? 既抽象又艱澀。 事實上想法是這樣的: 比如說現在想要比較兩個數字 $3$ , $5$ 之間的大小,則我們可以馬上知道 $ 3 < 5 $;同樣的,如果再考慮小數與無理數如 $1.8753$ 與 $\pi$,我們仍然可以比較大小 $1.8753 < \pi = 3.1415...$ 故可以發現我們有辦法對 "純量" 做明確的比大小,WHY? 因為前述例子中 $3$, $5$, $1.8753$ or $\pi$ 其各自的大小有辦法被 "measure "! 但是如果是現在考慮的是一組數字 我們如何去measure 其大小呢?? 比如說 \[x:=[1, -2, 0.1, 0 ]^T \]上式的大小該是多少? 是 $1$? $-2$? $0.1$??? 再者如果更過分一點,我們考慮一個矩陣 \[A = \left[ {\begin{array}{*{20}{c}} 1&2\\ 3&4 \end{array}} \right] \],想要知道這個矩陣的大小又該怎麼辦?? 是 $1$ ? $2$ 還是 $4$ ?..其實現階段我們說不清楚。 也正是如此,可以發現我們確實需要新的 "長度" 的定義來幫助我們如何去 measure 矩陣/向量/甚至是函數的大小。 故此,我們首先定義甚麼是Norm,(也就是把 "長度" or "大小" 的本質抽離出來) ================== Definition: Norm 考慮 $V$ 為一個向量空間(Vector space),則我們說  Norm 為一個函數 $||\cdot|| : V \rightarrow \mathbb{R}$ 且滿足下列性質