跳到主要內容

[控制理論] 具有負實部特徵值之 LTV系統 並不保證系統穩定

考慮線性非時變 (Linear Time-Invariant, LTI)系統利用狀態空間表示:
\[
{\bf \dot x} = A {\bf x} + B {\bf u}
\] 回憶在大學部自動控制課程中,我們知道 LTI 系統穩定 的 充分必要條件 為系統矩陣 $A$ 之特徵值具有負實部 (或者等價論述為 極點 pole 落在 複數平面的左半面)。現在我們想問若 系統為 線性時變 (Linear Time-Varying, LTV)系統是否此條件依然成立?

答案是否定的,以下為一個極為出色的反例:考慮線性時變系統 ${\bf \dot x} = A(t) {\bf x} $ 其中
\[A\left( t \right): = \left[ {\begin{array}{*{20}{c}}
{ - 1}&{{e^{2t}}}\\
0&{ - 1}
\end{array}} \right]
\] 且給定初始狀態為 $x_1(0) = x_2(0)=1$ 則由於此系統 $A(t)$ 矩陣為三角矩陣,其特徵值為對角線元素,亦即 $\lambda_{1,2} = -1$,具有負實部。然而,若我們求解此 LTV 系統,亦即觀察
\[{\bf{\dot x}}\left( t \right) = \left[ {\begin{array}{*{20}{c}}
{ - 1}&{{e^{2t}}}\\
0&{ - 1}
\end{array}} \right]\left[ \begin{array}{l}
{x_1}\left( t \right)\\
{x_2}\left( t \right)
\end{array} \right] = \left[ \begin{array}{l}
 - {x_1}\left( t \right) + {e^{2t}}{x_2}\left( t \right)\\
 - {x_2}\left( t \right)
\end{array} \right]\]故我們可首先解得
\[\begin{array}{*{20}{l}}
{{{\dot x}_2}\left( t \right) =  - {x_2}\left( t \right)}\\
\begin{array}{l}
 \Rightarrow {x_2}\left( t \right) = {e^{ - t}}{x_2}\left( 0 \right)\\
 \Rightarrow {x_2}\left( t \right) = {e^{ - t}}
\end{array}
\end{array}
\]再將此 $x_2(t)$ 帶回 $\dot x_1(t)$ 式中,可求解 $x_1$ 如下
\[\begin{array}{*{20}{l}}
{{{\dot x}_1}\left( t \right) =  - {x_1}\left( t \right) + {e^{2t}}{x_2}\left( t \right)}\\
{ \Rightarrow {{\dot x}_1}\left( t \right) =  - {x_1}\left( t \right) + {e^{2t}}{e^{ - t}}}\\
{ \Rightarrow {x_1}\left( t \right) = {e^{ - t}}{x_1}\left( 0 \right) + \int_0^t {{e^{ - \left( {t - \tau } \right)}}{e^\tau }d\tau } }\\
{ \Rightarrow {x_1}\left( t \right) = {e^{ - t}} + {e^{ - \left( t \right)}}\int_0^t {{e^{2\tau }}d\tau } }\\
{ \Rightarrow {x_1}\left( t \right) = \frac{1}{2}{e^t} + \frac{1}{2}{e^{ - \left( t \right)}}}
\end{array}\]故系統之解為
\[{{\bf{x}}\left( t \right) = \left[ \begin{array}{l}
{e^{ - t}}\\
\frac{1}{2}{e^t} + \frac{1}{2}{e^{ - \left( t \right)}}
\end{array} \right]}\]但注意到若我們計算上述之狀態的 2-norm 且取極限 $t \to \infty$ 會發現
\[\begin{array}{l}
\mathop {\lim }\limits_{t \to \infty } \left\| {{\bf{x}}\left( t \right)} \right\| = \mathop {\lim }\limits_{t \to \infty } \left\| {\left[ \begin{array}{l}
{e^{ - t}}\\
\frac{1}{2}{e^t} + \frac{1}{2}{e^{ - \left( t \right)}}
\end{array} \right]} \right\|\\
 = \mathop {\lim }\limits_{t \to \infty } {\left( {\left[ {\begin{array}{*{20}{c}}
{{e^{ - t}}}&{\frac{1}{2}{e^t} + \frac{1}{2}{e^{ - \left( t \right)}}}
\end{array}} \right]\left[ \begin{array}{l}
{e^{ - t}}\\
\frac{1}{2}{e^t} + \frac{1}{2}{e^{ - \left( t \right)}}
\end{array} \right]} \right)^{1/2}}\\
 = \mathop {\lim }\limits_{t \to \infty } {\left( {{e^{ - 2t}} + {{\left( {\frac{1}{2}{e^t} + \frac{1}{2}{e^{ - \left( t \right)}}} \right)}^2}} \right)^{1/2}} = \infty
\end{array}\]亦即系統狀態發散。

上述結果闡釋了對於 LTV 系統而言,負實部特徵值 (左半面極點) 不保證系統穩定。

留言

這個網誌中的熱門文章

[數學分析] 什麼是若且唯若 "if and only if"

數學上的 if and only if  ( 此文不討論邏輯學中的 if and only if,只討論數學上的 if and only if。) 中文翻譯叫做  若且唯若 (or 當且僅當) , 記得當初剛接觸這個詞彙的時候,我是完全不明白到底是甚麼意思,查了翻譯也是愛莫能助,畢竟有翻跟沒翻一樣,都是有看沒有懂。 在數學上如果看到 if and only if  這類的句子,其實是表示一種 雙條件句 ,通常可以直接將其視為" 定義(Definition)" 待之,今天要分享的是這樣的一個句子如何用比較直觀的方法去看他 假設我們現在有 兩個邏輯陳述句 A 與  B. 注意到,在此我們不必考慮這兩個陳述句到底是什麼,想表達什麼,或者到底是否為真(true),這些都不重要。只要知道是兩個陳述即可。 現在,考慮新的陳述:  "A if and only if B" 好了,現在主角登場,我們可以怎麼看待這個句子呢? 事實上我們可以很直覺的把這句子拆成兩部分看待,也就是 "( A if B ) and ( A only if B )" 那麼先針對第一個部分  A if B  來看, 其實這句就是說  if B then A, 更直白一點就是 "if B is true, then A is also true".  在數學上等價可以寫為 "B implies A" .  或者更常用一個箭頭符號來表示 "B $\Rightarrow$  A"  現在針對第二個部分  A only if B 此句意指  "If B is not true, then A is also not true". 所以如果已知 A is true,  那麼按照上句不難推得 B is also true 也就是說  A only if B  等價為 "If A is true then B is also true". 同樣,也可以寫作   "A implies B"   或者用箭頭表示  "A   $\Rightarrow$     B".

[數學分析] 淺談各種基本範數 (Norm)

這次要介紹的是數學上一個重要的概念: Norm: 一般翻譯成 範數 (在英語中 norm 有規範的意思,比如我們說normalization就是把某種東西/物品/事件 做 正規化,也就是加上規範使其正常化),不過個人認為其實翻譯成 範數 也是看不懂的...這邊建議把 Norm 想成長度就好 (事實上norm是長度的抽象推廣), 也許讀者會認為好端端的長度不用,為何又要發明一個 norm 來自討苦吃?? 既抽象又艱澀。 事實上想法是這樣的: 比如說現在想要比較兩個數字 $3$ , $5$ 之間的大小,則我們可以馬上知道 $ 3 < 5 $;同樣的,如果再考慮小數與無理數如 $1.8753$ 與 $\pi$,我們仍然可以比較大小 $1.8753 < \pi = 3.1415...$ 故可以發現我們有辦法對 "純量" 做明確的比大小,WHY? 因為前述例子中 $3$, $5$, $1.8753$ or $\pi$ 其各自的大小有辦法被 "measure "! 但是如果是現在考慮的是一組數字 我們如何去measure 其大小呢?? 比如說 \[x:=[1, -2, 0.1, 0 ]^T \]上式的大小該是多少? 是 $1$? $-2$? $0.1$??? 再者如果更過分一點,我們考慮一個矩陣 \[A = \left[ {\begin{array}{*{20}{c}} 1&2\\ 3&4 \end{array}} \right] \],想要知道這個矩陣的大小又該怎麼辦?? 是 $1$ ? $2$ 還是 $4$ ?..其實現階段我們說不清楚。 也正是如此,可以發現我們確實需要新的 "長度" 的定義來幫助我們如何去 measure 矩陣/向量/甚至是函數的大小。 故此,我們首先定義甚麼是Norm,(也就是把 "長度" or "大小" 的本質抽離出來) ================== Definition: Norm 考慮 $V$ 為一個向量空間(Vector space),則我們說  Norm 為一個函數 $||\cdot|| : V \rightarrow \mathbb{R}$ 且滿足下列性質