考慮離散泛函
\[\left\{ \begin{align*}
&J\left( x \right): = \sum\limits_{k = 0}^{N - 1} {F\left( {x\left( k \right),x\left( {k + 1} \right),k} \right)} ; \hfill \\
&x\left( {{0}} \right) = {x_0};x\left( {{N}} \right) = {x_1} \hfill \\
\end{align*} \right.
\]其中 $F(x,y,t), \frac{{\partial F}}{{\partial x}}, \frac{{\partial F}}{{\partial y}}$ 在其定義域上連續函數。我們的目標是求序列 $x(0), x(1),...,x(N)$ 使得上述泛函 $J(x)$ 達到極值。
Comments:
前述設定中的離散狀態 $x(k) := x(t_k)$ 其中 $t_k = kT$ 且 $T$ 為取樣週期 (sampling period)
=====================================
Theorem: 離散版本的 Euler-Lagrange Equation
若 $x(1),...,x(N - 1) $ 使得上述泛函 $J(x)$ 達到極值,則對任意 $k=1,2,...,N-1$
\[\frac{{\partial F\left( {x(k),x(k + 1),k} \right)}}{{\partial x\left( k \right)}} + \frac{{\partial F\left( {x(k - 1),x(k),k - 1} \right)}}{{\partial x(k)}} =0\]=====================================
\[
J(x + \alpha \delta x) \geq J(x)
\]且此表明 $ J\left( {x + \alpha \delta x} \right)$ 在 $\alpha =0$ 處達到極值,由變分與泛函極值關係可知
\[
\delta J\left( {x\left( k \right)} \right) = {\left. {\frac{\partial }{{\partial \alpha }}J\left( {x\left( k \right) + \alpha \delta x\left( k \right)} \right)} \right|_{\alpha = 0}} = 0
\]其中
\[J\left( {x(k) + \alpha \delta x(k)} \right) = \sum\limits_{k = 0}^{N - 1} {F\left( {x(k) + \alpha \delta x(k),x(k + 1) + \alpha \delta x(k + 1),k} \right)}
\]因此
\[
\delta J\left( {x\left( k \right)} \right) = {\left. {\frac{\partial }{{\partial \alpha }}\sum\limits_{k = 0}^{N - 1} {F\left( {x(k) + \alpha \delta x(k),x(k + 1) + \alpha \delta x(k + 1),k} \right)} } \right|_{\alpha = 0}} = 0
\]故我們可推得
\[\begin{align*}
&{\left. {\frac{\partial }{{\partial \alpha }}\sum\limits_{k = 0}^{N - 1} {F\left( {x(k) + \alpha \delta x(k),x(k + 1) + \alpha \delta x(k + 1),k} \right)} } \right|_{\alpha = 0}} = 0 \hfill \\
& \Rightarrow {\left. {\sum\limits_{k = 0}^{N - 1} {\frac{\partial }{{\partial \alpha }}F\left( {x(k) + \alpha \delta x(k),x(k + 1) + \alpha \delta x(k + 1),k} \right)} } \right|_{\alpha = 0}} \hfill \\
& \Rightarrow {\left. {\sum\limits_{k = 0}^{N - 1} {\frac{{\partial F}}{{\partial x\left( k \right)}}\delta x(k) + \frac{{\partial F}}{{\partial x(k + 1)}}\delta x(k + 1)} } \right|_{\alpha = 0}} = 0 \;\;\;\; (*)
\end{align*}
\] 現在觀察上式的第二項,利用變數變換 定義 $k:=m-1$ 則我們可改寫為
\[\begin{gathered}
\sum\limits_{k = 0}^{N - 1} {\frac{{\partial F\left( {x(k),x(k + 1),k} \right)}}{{\partial x(k + 1)}}\delta x(k + 1)} = \sum\limits_{m = 1}^N {\frac{{\partial F\left( {x(m - 1),x(m),m - 1} \right)}}{{\partial x(m)}}\delta x(m)} \hfill \\
= \frac{{\partial F\left( {x(N - 1),x(N),N - 1} \right)}}{{\partial x(N)}}\delta x(N) + \sum\limits_{m = 1}^{N - 1} {\frac{{\partial F\left( {x(m - 1),x(m),m - 1} \right)}}{{\partial x(m)}}\delta x(m)} \hfill \\
= \frac{{\partial F\left( {x(N - 1),x(N),N - 1} \right)}}{{\partial x(N)}}\delta x(N) + \sum\limits_{k = 1}^{N - 1} {\frac{{\partial F\left( {x(k - 1),x(k),k - 1} \right)}}{{\partial x(k)}}\delta x(k)} \hfill \\
\end{gathered} \]現在將上述結果代回 $(*)$,故可得
\[\small \begin{align*}
\delta J\left( {x\left( k \right)} \right) &= \sum\limits_{k = 0}^{N - 1} {\frac{{\partial F}}{{\partial x\left( k \right)}}\delta x(k) + \frac{{\partial F}}{{\partial x(k + 1)}}\delta x(k + 1)} \hfill \\
& = \sum\limits_{k = 0}^{N - 1} {\frac{{\partial F}}{{\partial x\left( k \right)}}\delta x(k) + \frac{{\partial F\left( {x(N - 1),x(N),N - 1} \right)}}{{\partial x(N)}}\delta x(N) + \frac{{\partial F\left( {x(k - 1),x(k),k - 1} \right)}}{{\partial x(k)}}\delta x(k)} \hfill \\
& = \frac{{\partial F\left( {x(N - 1),x(N),N - 1} \right)}}{{\partial x(N)}}\delta x(N) + \sum\limits_{k = 0}^{N - 1} {\left( {\frac{{\partial F}}{{\partial x\left( k \right)}} + \frac{{\partial F\left( {x(k - 1),x(k),k - 1} \right)}}{{\partial x(k)}}} \right)\delta x(k)} \hfill \\
\end{align*}
\]注意到上式中 $\delta x(N) =0$ 且由於 $\delta x(k)$ 為任意變分,故由 $\delta J = 0$ 我們可知
\[\begin{align*}
& \frac{{\partial F\left( {x(N - 1),x(N),N - 1} \right)}}{{\partial x(N)}}\delta x(N) + \hfill \\
\begin{array}{*{20}{c}}
{}&{}
\end{array}&\;\;\;\; \sum\limits_{k = 0}^{N - 1} {\left( {\frac{{\partial F\left( {x(k),x(k + 1),k} \right)}}{{\partial x\left( k \right)}} + \frac{{\partial F\left( {x(k - 1),x(k),k - 1} \right)}}{{\partial x(k)}}} \right)\delta x(k)} = 0
\end{align*} \]亦即對任意 $k=0,1,...,N-1$,
\[\frac{{\partial F\left( {x(k),x(k + 1),k} \right)}}{{\partial x\left( k \right)}} + \frac{{\partial F\left( {x(k - 1),x(k),k - 1} \right)}}{{\partial x(k)}} = 0\;\;\;\; \square
\]
沒有留言:
張貼留言