跳到主要內容

[凸分析] 常見的凸集性質(1) - 線性矩陣不等式之解 所成的集合 為 凸集

給定 $a \in \mathbb{R}^n$ ,我們定義 線性函數 $f : \mathbb{R}^n \to \mathbb{R}$ 滿足
\[
f(x) := a^T x = a_1 x_1 + ... + a_n x_n
\]
現在我們進一步推廣上述結果:亦即上述的向量 $a = (a_1,...,a_n)$ 可以用 對稱矩陣 $(A_1,...,A_n)$ 替換,且 $ A_i \in S^m$ 為 $\mathbb{R}^{m \times m}$ 對稱矩陣,現在我們模仿上述線性函數 $f$ 定義一個新的函數如下:定義  $F: \mathbb{R}^n \to S^m$ 滿足
\[
F(x) := x_1 A_1 + ... + x_n A_n
\]

Comments:
1. $ F(x) $ 仍為 $\mathbb{R}^{m \times m}$ 的對稱矩陣。
2. 上述提及的 線性函數 $f(x)$  (或者又說標準內積 或者 hyperplane) 可用以形成所謂 convex polyhedra 的集合,在此不贅述。


接著我們想問 對於上述 矩陣等式 $g(x)$ 而言,是否可以定義不等式? 一般而言在線性代數中我們定義 $F(x) \succ 0$ 表示 $F(x)$ 為正定矩陣,亦即 對任意 $z \in \mathbb{R}^n$ 且 $z \neq 0$ 我們有
\[
z^T F(x) z > 0
\] 我們說 $F(x) \succeq 0$ 表示 $F(x)$ 為半正定矩陣,亦即 對任意 $z \in \mathbb{R}^n$
\[
z^T F(x) z \geq 0
\]

FACT:
令 $A,B$ 為 兩實係數 對稱矩陣,若 $A \succeq 0$ 且 $B \succeq 0$ 則
\[
A+B \succeq 0
\]
Proof: omitted (此證明相對容易,在此略過)

========================
Definition: Linear Matrix Inequality (LMI)
我們稱一不等式 為對 $x$ 而言的線性矩陣不等式 (Linear Matrix Inequality in $x$, LMI) 若 前述的矩陣 $F(x)$ 具有下列形式:
\[
F(x) := x_1 A_1 + ... + x_n A_n \preceq B
\] 其中 $x_i \in \mathbb{R}^1$ 且 $B, A_i $ 為 $m \times m$ 對稱矩陣,$i=1,2,...,n$。
========================

Comments:
1. 上述 LMI 要求 $F(x) \preceq B $ 亦即 $B - F(x) \succeq 0$ ,也就是說 $B - F(x) $ 為正定對稱矩陣,由前述定義可知我們要求:對任意 $z \in \mathbb{R}^n$,
\[
z^T (B-F(x))z \geq 0
\]
2. LMI 為 "線性" in $x$
3. LMI 在 強健控制理論中扮演重要的角色,在此不贅述。


以下我們給出主要結果:
========================
FACT:
上述 LMI 之解所成之集合 \[
L:=\{x \in \mathbb{R}^n : F(x) \preceq B\}
\]為凸集。
========================

Proof:
令 $x,y \in L$ 且 $\theta \in [0,1]$ 我們要證明 $ \theta x + (1-\theta)y \in L $ 此等價於證明
\[
F(\theta x + (1-\theta)y) \preceq B
\] 現在觀察
\begin{align*}
  F(\theta x + (1 - \theta )y) &= (\theta {x_1} + (1 - \theta ){y_1}){A_1} + ... + (\theta {x_n} + (1 - \theta ){y_n}){A_n} \hfill \\
   &= \sum\limits_{i = 1}^n {(\theta {x_i} + (1 - \theta ){y_i}){A_i}}  \hfill \\
   &= \theta \sum\limits_{i = 1}^n {{x_i}{A_i}}  + (1 - \theta )\sum\limits_{i = 1}^n {{y_i}{A_i}}  \;\;\;\;\; (*) \hfill \\
\end{align*}
由於  $x,y \in L$ ,故我們有
\begin{align*}
F(x) &:= \sum_{i=1}^n x_i A_i  \preceq B; \\
F(y) &:= \sum_{i=1}^n  y_i A_i \preceq B
\end{align*}故將上述結果帶入 $(*)$ ,由於 $\theta \in [0,1]$ 利用前述 FACT 可得
\[
F(\theta x + (1-\theta)y) \preceq B
\]至此得證。$\square$

留言

這個網誌中的熱門文章

[數學分析] 什麼是若且唯若 "if and only if"

數學上的 if and only if  ( 此文不討論邏輯學中的 if and only if,只討論數學上的 if and only if。) 中文翻譯叫做  若且唯若 (or 當且僅當) , 記得當初剛接觸這個詞彙的時候,我是完全不明白到底是甚麼意思,查了翻譯也是愛莫能助,畢竟有翻跟沒翻一樣,都是有看沒有懂。 在數學上如果看到 if and only if  這類的句子,其實是表示一種 雙條件句 ,通常可以直接將其視為" 定義(Definition)" 待之,今天要分享的是這樣的一個句子如何用比較直觀的方法去看他 假設我們現在有 兩個邏輯陳述句 A 與  B. 注意到,在此我們不必考慮這兩個陳述句到底是什麼,想表達什麼,或者到底是否為真(true),這些都不重要。只要知道是兩個陳述即可。 現在,考慮新的陳述:  "A if and only if B" 好了,現在主角登場,我們可以怎麼看待這個句子呢? 事實上我們可以很直覺的把這句子拆成兩部分看待,也就是 "( A if B ) and ( A only if B )" 那麼先針對第一個部分  A if B  來看, 其實這句就是說  if B then A, 更直白一點就是 "if B is true, then A is also true".  在數學上等價可以寫為 "B implies A" .  或者更常用一個箭頭符號來表示 "B $\Rightarrow$  A"  現在針對第二個部分  A only if B 此句意指  "If B is not true, then A is also not true". 所以如果已知 A is true,  那麼按照上句不難推得 B is also true 也就是說  A only if B  等價為 "If A is true then B is also true". 同樣,也可以寫作   "A implies B"   或者用箭頭表示  "A   $\Rightarrow$     B".

[數學分析] 淺談各種基本範數 (Norm)

這次要介紹的是數學上一個重要的概念: Norm: 一般翻譯成 範數 (在英語中 norm 有規範的意思,比如我們說normalization就是把某種東西/物品/事件 做 正規化,也就是加上規範使其正常化),不過個人認為其實翻譯成 範數 也是看不懂的...這邊建議把 Norm 想成長度就好 (事實上norm是長度的抽象推廣), 也許讀者會認為好端端的長度不用,為何又要發明一個 norm 來自討苦吃?? 既抽象又艱澀。 事實上想法是這樣的: 比如說現在想要比較兩個數字 $3$ , $5$ 之間的大小,則我們可以馬上知道 $ 3 < 5 $;同樣的,如果再考慮小數與無理數如 $1.8753$ 與 $\pi$,我們仍然可以比較大小 $1.8753 < \pi = 3.1415...$ 故可以發現我們有辦法對 "純量" 做明確的比大小,WHY? 因為前述例子中 $3$, $5$, $1.8753$ or $\pi$ 其各自的大小有辦法被 "measure "! 但是如果是現在考慮的是一組數字 我們如何去measure 其大小呢?? 比如說 \[x:=[1, -2, 0.1, 0 ]^T \]上式的大小該是多少? 是 $1$? $-2$? $0.1$??? 再者如果更過分一點,我們考慮一個矩陣 \[A = \left[ {\begin{array}{*{20}{c}} 1&2\\ 3&4 \end{array}} \right] \],想要知道這個矩陣的大小又該怎麼辦?? 是 $1$ ? $2$ 還是 $4$ ?..其實現階段我們說不清楚。 也正是如此,可以發現我們確實需要新的 "長度" 的定義來幫助我們如何去 measure 矩陣/向量/甚至是函數的大小。 故此,我們首先定義甚麼是Norm,(也就是把 "長度" or "大小" 的本質抽離出來) ================== Definition: Norm 考慮 $V$ 為一個向量空間(Vector space),則我們說  Norm 為一個函數 $||\cdot|| : V \rightarrow \mathbb{R}$ 且滿足下列性質