4/20/2017

[凸分析] 半正定對稱矩陣所成之集合為凸錐

首先定義 $S^n$ 為由所有 實係數對稱矩陣 所形成之集合,表為
\[
S^n := \{A \in \mathbb{R}^{n \times n} : A^T = A\}
\] 則不難證明 $S^n$ 為一個 subspace (why?),故 $S%n$ 必為 vector space 。

Comments:
由於  $S^n$ 為一個 subspace ,我們可以定義其維度,且值得一提的是 $\dim S^n = (n) (n+1)/2$,在此不做贅述。


現在我們收集所有實係數對稱 且 半正定 (positive semidefinite) 矩陣,定義
\[
S_+^n := \{A \in S^n: A  \succeq  0\}
\] 其中 $A \succeq 0$ 表示 $A$ 為 半正定矩陣:亦即給定任意 $x \in \mathbb{R}^n$ 我們有
\[
x^T A x \geq 0
\]

則我們聲稱上述 $S_+^n $為 凸錐 (convex cone),以下我們給出主要 FACT :
===================
FACT:
$S_+^n$ 為 convex cone。
===================

Proof:
要證明 $S_+^n$ 為 convex cone,我們要證明 $S_+^n$ 為一個 cone 且 $S_+^n$ 為 convex,故我們令 $A,B \in S_+^n$ 與 $\theta_1, \theta_2 \geq 0$ 且必須證明
\[
\theta_1 A + \theta_2 B \in S_+^n
\]
此等價證明 $ \theta_1 A + \theta_2 B $ 為對稱矩陣 且 半正定。現在我們首先證明對稱性:觀察
\[{({\theta _1}A + {\theta _2}B)^T} = {\theta _1}{A^T} + {\theta _2}{B^T} = {\theta _1}A + {\theta _2}B\]注意最後一條等式成立因為  $A,B \in S_+^n$ 故  $A=A^T,B=B^T$。

接著我們證明半正定性質:取 $x \in \mathbb{R}^n$ 觀察
\[{x^T}({\theta _1}A + {\theta _2}B)x = {\theta _1}{x^T}Ax + {\theta _2}{x^T}Bx \geqslant 0\]同樣最後一條等式成立因為   $A,B \in S_+^n$ 故  $x^TAx \geq 0$ 且 $x^T Bx \geq 0$。$\square$


Comments:
上述結果指出 線性代數中的 對稱半正定矩陣 可以與 凸分析 中的凸集拉上關係。

沒有留言:

張貼留言

[最佳化] C^2 函數一階逼近的餘項積分表示

令 $f: \mathbb{R}^m \to \mathbb{R}$ 為 $C^2$-函數。對 $f$ 在 $y$ 附近使用一階泰勒展開: \[ T_y(x) := f(y) + \nabla f(y)^\top (x - y) \] 則其餘項 $R(x,y)$ 訂為 $$R(...