11/22/2013

[隨機過程] 隨機過程淺淺談(I) - 計數過程Counting process

首先給出 計數過程( Counting Process )的定義如下

========================
Definition: Counting Process
我們說一個 計數過程 $\{N_t, t \geq 0\}$ 是一個從時間 $0$ 到現在時間 $t$ 計算某事物發生次數的 隨機過程
========================

注意定義中所指的事物可以想成表示為任何可以計數的事,其在 時間 從 $0$ 到 $t$ 發生的次數 我們把他叫做 $N_t$ (你也許會問,為何要叫 $N_t$ 其實很簡單就是英文 Number 的縮寫

舉例來說,我們可以把 $N_t$ 想成某網站從開站至今的點擊次數;或者汽車通過收費站的次數

好了,這個定義其實不是很直覺,我們來看張 計數過程 示意圖也許會清楚一點

上圖中橫軸是時間 $t$,縱軸是某事件發生到該時間的(累計)次數 $N_t$, 觀察上圖,我們可以發現一些現象
  1. 階梯狀的計數,表示次數逐漸增加(每計數一次就 $+1$)
  2. 時間 $T_i$是隨機的,也就是 計數過程 隨機的部分是在於我們不知道某事件到底會在什麼時候發生
  3. 計數過程 是右連續(簡單說就是 上圖對任易計數的右方逼近可以得到實黑點EX: 在時間 $T_2$ 計數為 $2$ 不是 $1$)

Comments
1. 現在假設 給定我們關心的計數時間為 $0 \leq t_1 \leq t_2 < \infty $ (也就是說我們不考慮無窮久的情況),然後我們想要知道在時間 $t_1$ 與 $t_2$ 之間,我們所關心的某事物(比如網站點擊率)發生的次數有多少。那麼我們該如何計算呢?

由前方定義我們知道 $N_{t_2}$ 表示的是在 時間從 $0$ 到 $t_2$ 發生的次數
同樣的, $N_{t_1}$ 表示的是在 時間從 $0$ 到 $t_1$ 發生的次數

所以如果我們把 $N_{t_2}$ 與 $N_{t_1}$ 相減,也就是 $N_{t_2} - N_{t_1}$,那我們得到的就是 在時間從 $t_1$ 到 $t_2$ 的發生次數 (看圖)

2. 我們把 $N_{t_2} - N_{t_1}$ 叫做 計數過程的 增量(increment)


[延伸閱讀]
[數學] 隨機過程淺淺談(0)-先備概念
[數學] 隨機過程淺淺談(II) - 波松過程Poisson process
[數學] 隨機過程淺淺談(III) - 布朗運動 or 維納過程 (Brownian motion or Wiener Process)

[Ref: J. A. Gubner, Probability and Random Processes for Electrical and Computer Engineers, Cambridge, 2006]

沒有留言:

張貼留言

[隨筆] A+焦慮的世代

接住A+世代學生 當了老師之後發現要"接住"學生確實不容易,撇開老師自身可能也有需要被接住的問題不談。我這幾年常常感受到這世代的學生們有著很大的徬徨,不太清楚未來的方向,但是卻有著非得要拿到A/A+不可的糾結,於是課優先選甜涼課,實習競賽投好投滿。好像看著同學...