跳到主要內容

[隨機分析] Ito Integral 淺談 (III) - Localization


這次要介紹的是 Localization 的概念。

回憶之前我們所定義的 Ito Integral 都要求 我們的積分變數 $f \in \mathcal{H}^2$,亦即積分變數必須滿足如下 $L^2$ 可積性條件
\[
E \left[ \int_0^T f^2(\omega, t) dt \right] < \infty
\]
現在如果我們考慮如下 Ito Integral:
考慮 $g : \mathbb{R} \rightarrow \mathbb{R}$ 為連續函數
\[
\int_0^t g(B_s)dB_s
\]則此 連續函數的積分變數 $g$ 並無法滿足我們的可積性條件 (WHY?):比如說如果我們選擇
\[
g(B_t) :={e^{{B_t}^4}}
\],為一個連續函數,但如果我們現在去觀察其期望值: (by Jensen's inequality)
\[
E[{e^{{B_t}^4}}] \ge {e^{E[{B_t}^4]}} = {e^{E[{B_t}^4]}} = {e^{3{t^2}}}
\]上式透過Jensen inequality告訴我們有明確的下界,但並無上界 (隨著 $t$ 變大,下界跟著exponetially 變大),也就是說 $E[{e^{{B_t}^4}}] \rightarrow \infty$ 還沒開始積分就爆掉了。為了解決這個問題。 我們需要進一步拓展可積分的函數範圍,我們利用 Stopping time來巧妙的幫助我們拓展Ito Integral至更廣泛的函數 (EX: 連續函數)。

------------------------
Definition: $f \in L_{LOC}^2 [0,T]$ space
令函數 $f: \Omega \times [0,T] \rightarrow \mathbb{R}$ 為 measurable 與 adapted;若存在一組 非遞減 (nondecreasing) 停止時間(stopping time) 的 sequence
\[
\upsilon_1(\omega) \leq \upsilon _2(\omega) \leq ... \leq \upsilon_n(\omega) \leq ...
\] 使得 $f_n(\omega,t) := f(\omega,t) \cdot 1_{ \{ t \leq \upsilon_n(\omega) \} } \in \mathcal{H}^2[0,T]$ 且對足夠大的 $n$而言, $\upsilon_n(\omega) = T$ for almost every $\omega$;則我們說
\[
f \in L_{LOC}^2 [0,T]
 \]

Comments:
1. 上述定義中的 停止時間(stopping time) 的 sequence 稱作 Localizing sequence. 用來把增加的太快的函數用 stopping time 擋下來 使其仍然落在 $\mathcal{H}^2$ 之中。

2. 由 $f \in L_{LOC}^2$ 的定義,可知  $\mathcal{H}^2 \subset L_{LOC}^2$,故對任意連續函數 $g : \mathbb{R} \rightarrow \mathbb{R}$ 而言,我們有 $f(\omega, t) = g(B_t)$,注意到標準布朗運動 $B_t$ 為連續函數,故 $g(B_t)$亦為連續函數。現在如果我們的 $ f(\omega,t) = g(B_t) \in L_{LOC}^2$,則有一組停止時間使得我們的積分變數都落在 $\mathcal{H}^2$又因為連續函數在compact domain必為有界,故我們可以推論對任意固定 $\omega$,函數 $t \mapsto g(B_t(\omega))$ 在閉區間 $[0, T]$ 為有界,亦即 $ f(\omega,t) = g(B_t) \in L_{LOC}^2$。積分變數為連續函數的 Ito Integral 亦可被定義。

3. 上述的定義適合用於拓展Ito積分到 $L_{LOC}^2$,但並不容易用來確認函數是否落在 $L_{LOC}^2$。故下面我們給出一個等價的定義結果:

Claim: $f \in L_{LOC}^2 \Leftrightarrow \int_0^T f(\omega,t)^2 dt < \infty$ for almost every $\omega$

Proof
先證 $ ( \Rightarrow )$
假設 $f \in L_{LOC}^2$,我們要證明 $\int_0^T f(\omega,t)^2 dt < \infty$ for almost every $\omega$

由定義 $f \in L_{LOC}^2 [0,T]$ space,可知 存在一組 非遞減 (nondecreasing) 停止時間(stopping time) 的 sequence
\[
\upsilon_1(\omega) \leq \upsilon _2(\omega) \leq ... \leq \upsilon_n(\omega) \leq ...
\] 使得 $f_n(\omega,t) = f(\omega,t) \cdot 1_{ \{ t \leq \upsilon_n(\omega) \} } \in \mathcal{H}^2[0,T]$
且對足夠大的 $n$而言, $\upsilon_n(\omega) = T$ for almost every $\omega$

我們首先利用 $f_n(\omega,t) \in \mathcal{H}^2$ 可知,
\[
E \left [ \int_0^T f^2_n(\omega,t) dt \right ] < \infty
\] 亦即
\[
\Rightarrow E \left [ \int_0^T f^2(\omega,t) \cdot 1_{ \{ t \leq \upsilon_n(\omega) \} } dt \right ] < \infty \ \ \ (*)
\] 注意到其實上式已經幾乎是我們要的,如果我們能證明期望值內部的積分是有限的。故我們定義一個事件為 " $f_n(\omega,t)$ 為平方可積分的事件",亦即定義事件 $\Gamma_n$如下
\[
\Gamma_n := \left \{ \omega:  \int_0^T f^2_n(\omega,t) dt <\infty \right \}
\]
則機率 $P \{ \Gamma_n \} = 1$

現在,我們對$\Gamma_n$取交集,得到 $\Gamma  = \bigcap\limits_n {{\Gamma _n}} $,且 $P \{ \Gamma \} = 1$;

現在我們使用為尚未用上的 $f \in L_{LOC}^2 [0,T]$ space 定義:對足夠大的 $n$而言, $\upsilon_n(\omega) = T$ for almost every $\omega$,

故令 $\omega \in \Gamma$ 且 $n$ 足夠大。使得$\upsilon_n(\omega) = T$;則我們觀察式 $(*)$ 的等號右邊
\[
  \int_0^T f^2(\omega,t) \cdot 1_{ \{ t \leq \upsilon_n(\omega) \} } dt =  \int_0^T f^2(\omega,t) \cdot 1_{ \{ t \leq  T \} } dt <\infty
\]但是又注意因為上式 Indicator function 為 $1_{ \{ t \leq  T \}}$ 而積分範圍是從 $0$ 到 $T$,故此$1_{ \{ t \leq  T \}} =1$,亦即
\[
  \int_0^T f^2(\omega,t) \cdot 1_{ \{ t \leq  T \} } dt = \int_0^T f^2(\omega,t) dt  <\infty
\]
故得證 $(\Rightarrow)$

接著我們證明另一個方向 $(\Leftarrow)$:
假設  $\int_0^T f(\omega,t)^2 dt < \infty$ for almost every $\omega$,我們要證明  $f \in L_{LOC}^2$。

也就是要證明:"存在一組 非遞減 (nondecreasing) 停止時間(stopping time) 的 sequence
\[
\upsilon_1(\omega) \leq \upsilon _2(\omega) \leq ... \leq \upsilon_n(\omega) \leq ...
\] 使得 $f_n(\omega,t) := f(\omega,t) \cdot 1_{ \{ t \leq \upsilon_n(\omega) \} } \in \mathcal{H}^2[0,T]$ 且對足夠大的 $n$而言, $\upsilon_n(\omega) = T$ for almost every $\omega$ "

故我們現在定義一組符合上述要求 停止時間的sequence
\[
\upsilon_n(\omega) := \inf \left \{ s \geq 0 : \int_0^s f(\omega, u)^2 du \geq n \ or \ s=T \right \}
\]由基本積分理論可知 $s \mapsto \int_0^s f(\omega, s)^s du$ 為一個連續函數,故我們有下列結果
\[
\int_0^{\upsilon_n(\omega)} f^2(\omega, u) du \leq n \Rightarrow \int_0^T f^2(\omega, u) \cdot 1_{ \{u \leq \upsilon_n(\omega)\}} du \leq n
\]第二式成立是因為對時間 $(du)$ 積分 (非對 $d B_u$積分的 隨機積分)。又因為上式為小於或等於 $n$ 故 我們對其取期望值
\[
E[ \int_0^T f^2(\omega, u) \cdot 1_{\{u \leq \upsilon_n(\omega)\}} du] \leq n < \infty
\]
亦即, $f(\omega,u) \cdot 1_{\{ u \leq \upsilon_n(\omega) \} } \in \mathcal{H}^2[0,T]$. 即為所求 $\square$

==========
延伸閱讀
[隨機分析] Ito Integral 淺談 (IV) - Ito Integral on L^2 Local space

ref:
J. M. Steele, Stochastic Calculus and Financial Applications, Springer

留言

這個網誌中的熱門文章

[數學分析] 什麼是若且唯若 "if and only if"

數學上的 if and only if  ( 此文不討論邏輯學中的 if and only if,只討論數學上的 if and only if。) 中文翻譯叫做  若且唯若 (or 當且僅當) , 記得當初剛接觸這個詞彙的時候,我是完全不明白到底是甚麼意思,查了翻譯也是愛莫能助,畢竟有翻跟沒翻一樣,都是有看沒有懂。 在數學上如果看到 if and only if  這類的句子,其實是表示一種 雙條件句 ,通常可以直接將其視為" 定義(Definition)" 待之,今天要分享的是這樣的一個句子如何用比較直觀的方法去看他 假設我們現在有 兩個邏輯陳述句 A 與  B. 注意到,在此我們不必考慮這兩個陳述句到底是什麼,想表達什麼,或者到底是否為真(true),這些都不重要。只要知道是兩個陳述即可。 現在,考慮新的陳述:  "A if and only if B" 好了,現在主角登場,我們可以怎麼看待這個句子呢? 事實上我們可以很直覺的把這句子拆成兩部分看待,也就是 "( A if B ) and ( A only if B )" 那麼先針對第一個部分  A if B  來看, 其實這句就是說  if B then A, 更直白一點就是 "if B is true, then A is also true".  在數學上等價可以寫為 "B implies A" .  或者更常用一個箭頭符號來表示 "B $\Rightarrow$  A"  現在針對第二個部分  A only if B 此句意指  "If B is not true, then A is also not true". 所以如果已知 A is true,  那麼按照上句不難推得 B is also true 也就是說  A only if B  等價為 "If A is true then B is also true". 同樣,也可以寫作   "A implies B"   或者用箭頭表示  "A   $\Rightarrow$     B".

[數學分析] 淺談各種基本範數 (Norm)

這次要介紹的是數學上一個重要的概念: Norm: 一般翻譯成 範數 (在英語中 norm 有規範的意思,比如我們說normalization就是把某種東西/物品/事件 做 正規化,也就是加上規範使其正常化),不過個人認為其實翻譯成 範數 也是看不懂的...這邊建議把 Norm 想成長度就好 (事實上norm是長度的抽象推廣), 也許讀者會認為好端端的長度不用,為何又要發明一個 norm 來自討苦吃?? 既抽象又艱澀。 事實上想法是這樣的: 比如說現在想要比較兩個數字 $3$ , $5$ 之間的大小,則我們可以馬上知道 $ 3 < 5 $;同樣的,如果再考慮小數與無理數如 $1.8753$ 與 $\pi$,我們仍然可以比較大小 $1.8753 < \pi = 3.1415...$ 故可以發現我們有辦法對 "純量" 做明確的比大小,WHY? 因為前述例子中 $3$, $5$, $1.8753$ or $\pi$ 其各自的大小有辦法被 "measure "! 但是如果是現在考慮的是一組數字 我們如何去measure 其大小呢?? 比如說 \[x:=[1, -2, 0.1, 0 ]^T \]上式的大小該是多少? 是 $1$? $-2$? $0.1$??? 再者如果更過分一點,我們考慮一個矩陣 \[A = \left[ {\begin{array}{*{20}{c}} 1&2\\ 3&4 \end{array}} \right] \],想要知道這個矩陣的大小又該怎麼辦?? 是 $1$ ? $2$ 還是 $4$ ?..其實現階段我們說不清楚。 也正是如此,可以發現我們確實需要新的 "長度" 的定義來幫助我們如何去 measure 矩陣/向量/甚至是函數的大小。 故此,我們首先定義甚麼是Norm,(也就是把 "長度" or "大小" 的本質抽離出來) ================== Definition: Norm 考慮 $V$ 為一個向量空間(Vector space),則我們說  Norm 為一個函數 $||\cdot|| : V \rightarrow \mathbb{R}$ 且滿足下列性質