這次要介紹的是一個重要的方法求解 基本線性微分方程(Ordinary Differential Equation, ODE)。亦即所謂的 積分因子法 (Integration Factor Method)
想法:透過構造出積分因子 (Integrating Faction) 使得我們可以透過 微分鏈鎖律(chain rule) 將 微分方程 改寫為 兩個函數的乘積取導數 的形式以方便求解。
首先考慮一個 線性ODE 具有如下形式 (如果可以湊成如下形式則即可使用 積分因子法進行求解)
\[
y'(t) + a(t) y(t) = g(t) \ \ \ \ (*)
\]解:
定義積分因子:
\[
e^{\int_0^t a(s)ds}
\] 對 $(*)$ 兩邊同乘積分因子我們得到
\[\begin{array}{l}
y'(t) \cdot {e^{\int_0^t a (s)ds}} + y(t)a(t) \cdot {e^{\int_0^t a (s)ds}} = g(t) \cdot {e^{\int_0^t a (s)ds}}\\
\Rightarrow \frac{d}{{dt}}\left( {y(t) \cdot {e^{\int_0^t a (s)ds}}} \right) = g(t) \cdot {e^{\int_0^t a (s)ds}}
\end{array}
\]
對兩邊同取積分可得
\[\begin{array}{l}
\int_0^t {\frac{d}{{dt}}\left( {y(t) \cdot {e^{\int_0^t a (s)ds}}} \right)} ds = \int_0^t {g(t) \cdot {e^{\int_0^t a (s)ds}}} ds\\
\Rightarrow y(t) \cdot {e^{\int_0^t a (s)ds}} - y\left( 0 \right) = \int_0^t {g(t) \cdot {e^{\int_0^t a (s)ds}}} ds\\
\Rightarrow y(t) = y\left( 0 \right){e^{ - \int_0^t a (s)ds}} + {e^{ - \int_0^t a (s)ds}} \cdot \left( {\int_0^t {g(t) \cdot {e^{\int_0^t a (s)ds}}} ds} \right) \ \ \ \ (\star)
\end{array}\]
現在我們得到了一個解,故此需回頭確認 其確實為滿足 ODE $(*)$的解。故對其微分,由chain rule我們得到
\[\begin{array}{l}
y'(t) = - a\left( t \right)y\left( 0 \right){e^{ - \int_0^t a (s)ds}} + \left( { - a\left( t \right)} \right){e^{ - \int_0^t a (s)ds}} \cdot \left( {\int_0^t {g(t) \cdot {e^{\int_0^t a (s)ds}}} ds} \right)\\
\ \ \ \ \ \ \ \ \ \ + {e^{ - \int_0^t a (s)ds}} \cdot \left( {g(t) \cdot {e^{\int_0^t a (s)ds}}} \right)\\
\Rightarrow y'(t) = - a\left( t \right)y\left( t \right) + g(t)
\end{array}\]
故 $(\star)$確實為我們 的 線性ODE
\[
y'(t) + a(t) y(t) = g(t)
\]
的解。
此法即為積分因子法。
If you can’t solve a problem, then there is an easier problem you can solve: find it. -George Polya
訂閱:
張貼留言 (Atom)
[數學分析] 連續函數族的逐點上包絡函數不一定連續
連續函數有諸多用途,一般在參數最佳化領域中常見的情況是考慮所謂的 上包絡函數(upper envelope function)。 Definition: 定義函數族 \(\{f_t : t \in T\} \) 其中 \(T\) 為 index set 並考慮對任意 \(x ...
-
數學上的 if and only if ( 此文不討論邏輯學中的 if and only if,只討論數學上的 if and only if。) 中文翻譯叫做 若且唯若 (or 當且僅當) , 記得當初剛接觸這個詞彙的時候,我是完全不明白到底是甚麼意思,查了翻譯也是愛...
-
這次要介紹的是數學上一個重要的概念: Norm: 一般翻譯成 範數 (在英語中 norm 有規範的意思,比如我們說normalization就是把某種東西/物品/事件 做 正規化,也就是加上規範使其正常化),不過個人認為其實翻譯成 範數 也是看不懂的...這邊建議把 No...
-
半導體中的電流是由電子(electron)及電洞(hole)兩種載子(carrier)移動所產生 載子移動的方式: 擴散(diffusion) $\Rightarrow$ 擴散電流 (不受外力電場作用) 飄移(drift) $\Rightarrow$ 飄移電流 (受外...
沒有留言:
張貼留言