這次是介紹一個重要的積分不等式 (格朗沃爾不等式) Gronwall's inequality;此不等式提出了對於滿足某(微)積分方程的函數,有相應的(微)積分不等式。
此不等式在微分方程 與 隨機微分方程的的求解中扮演重要的腳色。是十分強大的數學工具。
========================
FACT: (Gronwall's inequality)
考慮 $t \in [0,T]$,且 $g \in L^1[0,T]$,若 $g(t) \leq C \cdot \int_{t_0}^{t} g(s) ds + B$ ,則
\[
g(t) \leq B \cdot e^{C (t-t_0)}
\]========================
Proof
設 $g(t) \leq C \cdot \int_{t_0}^{t} g(s) ds + B$ ,我們需要證明
\[
g(t) \leq B \cdot e^{C (t-t_0)}
\]已知
\[\begin{array}{l}
\frac{d}{{dt}}\left( {{e^{ - Ct}}\int_{{t_0}}^t {g\left( s \right)ds} } \right) = - C{e^{ - Ct}}\int_{{t_0}}^t {g\left( s \right)ds} + {e^{ - Ct}}g\left( t \right)\\
\Rightarrow \frac{d}{{dt}}\left( {{e^{ - Ct}}\int_{{t_0}}^t {g\left( s \right)ds} } \right) = {e^{ - Ct}}\left[ {g\left( t \right) - C\int_{{t_0}}^t {g\left( s \right)ds} } \right]
\end{array}
\]由我們的假設 $g(t) \leq C \cdot \int_{t_0}^{t} g(s) ds + B$ 可知
\[\frac{d}{{dt}}\left( {{e^{ - Ct}}\int_{{t_0}}^t {g\left( s \right)ds} } \right) \le B \cdot {e^{ - Ct}}
\]兩邊同積分,可得
\[\begin{array}{l}
\int_{{t_0}}^t {\frac{d}{{dt}}\left( {{e^{ - Ct}}\int_{{t_0}}^t {g\left( s \right)ds} } \right)} ds \le B \cdot \int_{{t_0}}^t {{e^{ - Cs}}} ds\\
\Rightarrow {e^{ - Ct}}\int_{{t_0}}^t {g\left( s \right)ds} \le B \int_{{t_0}}^t {{e^{ - Cs}}} ds = \frac{{ B \cdot }}{C}\left( {{e^{ - Ct}} - {e^{ - C{t_0}}}} \right)
\end{array}\]
亦即
\[ \Rightarrow \int_{{t_0}}^t {g\left( s \right)ds} \le B{e^{Ct}}\frac{{{{\rm{e}}^{ - C{t_0}}} - {{\rm{e}}^{ - Ct}}}}{C} = \frac{B}{C}\left( {{e^{C\left( {t - {t_0}} \right)}} - 1} \right)
\]現在把上式帶回我們的假設
\[\begin{array}{l}
g(t) \le C \cdot \int_{{t_0}}^t g (s)ds + B \le C \cdot \left( {\frac{B}{C}\left( {{e^{C\left( {t - {t_0}} \right)}} - 1} \right)} \right) + B = B{e^{C\left( {t - {t_0}} \right)}}\\
\Rightarrow g(t) \le B{e^{C\left( {t - {t_0}} \right)}}
\end{array}
\] 即為所求。$\square$
此不等式在微分方程 與 隨機微分方程的的求解中扮演重要的腳色。是十分強大的數學工具。
========================
FACT: (Gronwall's inequality)
考慮 $t \in [0,T]$,且 $g \in L^1[0,T]$,若 $g(t) \leq C \cdot \int_{t_0}^{t} g(s) ds + B$ ,則
\[
g(t) \leq B \cdot e^{C (t-t_0)}
\]========================
Proof
設 $g(t) \leq C \cdot \int_{t_0}^{t} g(s) ds + B$ ,我們需要證明
\[
g(t) \leq B \cdot e^{C (t-t_0)}
\]已知
\[\begin{array}{l}
\frac{d}{{dt}}\left( {{e^{ - Ct}}\int_{{t_0}}^t {g\left( s \right)ds} } \right) = - C{e^{ - Ct}}\int_{{t_0}}^t {g\left( s \right)ds} + {e^{ - Ct}}g\left( t \right)\\
\Rightarrow \frac{d}{{dt}}\left( {{e^{ - Ct}}\int_{{t_0}}^t {g\left( s \right)ds} } \right) = {e^{ - Ct}}\left[ {g\left( t \right) - C\int_{{t_0}}^t {g\left( s \right)ds} } \right]
\end{array}
\]由我們的假設 $g(t) \leq C \cdot \int_{t_0}^{t} g(s) ds + B$ 可知
\[\frac{d}{{dt}}\left( {{e^{ - Ct}}\int_{{t_0}}^t {g\left( s \right)ds} } \right) \le B \cdot {e^{ - Ct}}
\]兩邊同積分,可得
\[\begin{array}{l}
\int_{{t_0}}^t {\frac{d}{{dt}}\left( {{e^{ - Ct}}\int_{{t_0}}^t {g\left( s \right)ds} } \right)} ds \le B \cdot \int_{{t_0}}^t {{e^{ - Cs}}} ds\\
\Rightarrow {e^{ - Ct}}\int_{{t_0}}^t {g\left( s \right)ds} \le B \int_{{t_0}}^t {{e^{ - Cs}}} ds = \frac{{ B \cdot }}{C}\left( {{e^{ - Ct}} - {e^{ - C{t_0}}}} \right)
\end{array}\]
亦即
\[ \Rightarrow \int_{{t_0}}^t {g\left( s \right)ds} \le B{e^{Ct}}\frac{{{{\rm{e}}^{ - C{t_0}}} - {{\rm{e}}^{ - Ct}}}}{C} = \frac{B}{C}\left( {{e^{C\left( {t - {t_0}} \right)}} - 1} \right)
\]現在把上式帶回我們的假設
\[\begin{array}{l}
g(t) \le C \cdot \int_{{t_0}}^t g (s)ds + B \le C \cdot \left( {\frac{B}{C}\left( {{e^{C\left( {t - {t_0}} \right)}} - 1} \right)} \right) + B = B{e^{C\left( {t - {t_0}} \right)}}\\
\Rightarrow g(t) \le B{e^{C\left( {t - {t_0}} \right)}}
\end{array}
\] 即為所求。$\square$
留言
張貼留言