跳到主要內容

[半導體] 半導體的不均勻參雜 (Nonuniform doping) 與內建電場

回憶若半導體為均勻參雜(uniform doping),則
對於參雜 III 族元素(e.g., ) 而言,會得到 P-type 半導體,hole 為主要載子,濃度為 $p=N_A$
對於參雜 V 族元素而言,會得到 N-type 半導體,electron 為主要載子,濃度為 $n=N_D$

但現在若考慮參雜為不均勻分布,則對應的 $N_A, N_D$ 濃度將不再是固定常數,而是一個隨空間變化的函數,為了分析簡便我們這邊採用 1-Dimensional ,亦即 electron or hole 的濃度為 $x$ 的函數如下
\[
N_A(x), N_D(x)
\]現在令  $p^+(x)$ 表 電洞濃度,$N_A^-(x)$ 表對應的三價雜質的離子濃度。則此時我們不能再說電洞濃度 $p^+(x) = N_A^-(x)$ 或者 電子濃度 $n^-(x) = N_D^+(x)$,因為一旦成為了空間的函數,若濃度不均,就會產生 擴散效應 (diffusion ) 。

故在不均勻參雜的情況,我們有
\[\left\{ \begin{array}{l}
p\left( x \right) \approx {N_A}\left( x \right)\\
n\left( x \right) \approx {N_D}\left( x \right)
\end{array} \right.\]
現在我們以一個 開路 P-type 半導體為例
繪製濃度與空間的圖形如下:
上圖顯示了在 $N_A(x)$ 濃度較高處 (e.g., $x=x_1$),則我們有
\[
N_A^-(x) \ge p^+(x)
\]亦即此時的 淨電荷(net charge)為 負電荷。
在 $N_A(x)$ 濃度較低處 (e.g., $x=x_2$),則我們有
\[
N_A^-(x) \le p^+(x)
\]亦即此時的 淨電荷(net charge)為 正電荷。

故整體而言,雜質的濃度會在 $x_2$ 區域 積聚淨正電荷,並在 $x_1$ 區域積聚淨負電荷,此時便會產生內建電場 (build-in electric field) $\vec E(x)$,其方向會由正電荷指向負電荷方向 (濃度高指向濃度低) 如下圖所示

一旦產生此內建電場,便會對其中的半導體中的載子形成飄移電流(Drift current) 進而產生有所謂的 內建電位差 $V_{21}$

那麼我們的問題便是 內建電位差是多少?
我們首先逐步計算此電位差,由於 P-type 為開路,故電流為 $0$,亦即我們令 $J_p$ 表總電洞電流密度,$J_{p,drift}$ 為電洞的飄移電流密度,$J_{p,diffusion}$ 為電洞的擴散電流密度,則我們有
\[{J_{p,total}} = {J_{p,drift}} + {J_{p,diffusion}} \equiv 0 \ \ \ \ (*)
\]回憶電洞飄移電流密度與飄移速度 $v_d$成正比以及 電洞擴散電流密度與濃度梯度成正比,故我們有下列關係
\[\left\{ \begin{array}{l}
{J_{p,drift}} = \left( {qp} \right){v_d} = qp{\mu _p}E\\
{J_{p,diffusion}} =  - q{D_p}\frac{{dp}}{{dx}}
\end{array} \right.\]現在將上式帶入 $(*)$ 可得
\[\begin{array}{l}
{J_{p,drift}} + {J_{p,diffusion}} \equiv 0\\
 \Rightarrow qp{\mu _p}E - q{D_p}\frac{{dp}}{{dx}} = 0\\
 \Rightarrow E = \frac{{{D_p}}}{{p{\mu _p}}}\frac{{dp}}{{dx}}
\end{array}
\]現在利用電場定義 $E = -dV/dx$ 帶入上式並且兩邊同取積分,我們可得
\[\begin{array}{l}
\frac{{ - dV}}{{dx}}dx = \frac{{{D_p}}}{{{\mu _p}}}\frac{{dp}}{p}\\
 \Rightarrow \int_1^2 {dV}  =  - \frac{{{D_p}}}{{{\mu _p}}}\int_1^2 {\frac{{dp}}{p}} \\
 \Rightarrow {V_2} - {V_1} = \underbrace {\frac{{{D_p}}}{{{\mu _p}}}}_{: = {V_T}}\ln \left( {\frac{{{p_1}}}{{{p_2}}}} \right)\\
 \Rightarrow {V_{21}} = {V_T}\ln \left( {\frac{{{p_1}}}{{{p_2}}}} \right)
\end{array}\]


留言

這個網誌中的熱門文章

[數學分析] 什麼是若且唯若 "if and only if"

數學上的 if and only if  ( 此文不討論邏輯學中的 if and only if,只討論數學上的 if and only if。) 中文翻譯叫做  若且唯若 (or 當且僅當) , 記得當初剛接觸這個詞彙的時候,我是完全不明白到底是甚麼意思,查了翻譯也是愛莫能助,畢竟有翻跟沒翻一樣,都是有看沒有懂。 在數學上如果看到 if and only if  這類的句子,其實是表示一種 雙條件句 ,通常可以直接將其視為" 定義(Definition)" 待之,今天要分享的是這樣的一個句子如何用比較直觀的方法去看他 假設我們現在有 兩個邏輯陳述句 A 與  B. 注意到,在此我們不必考慮這兩個陳述句到底是什麼,想表達什麼,或者到底是否為真(true),這些都不重要。只要知道是兩個陳述即可。 現在,考慮新的陳述:  "A if and only if B" 好了,現在主角登場,我們可以怎麼看待這個句子呢? 事實上我們可以很直覺的把這句子拆成兩部分看待,也就是 "( A if B ) and ( A only if B )" 那麼先針對第一個部分  A if B  來看, 其實這句就是說  if B then A, 更直白一點就是 "if B is true, then A is also true".  在數學上等價可以寫為 "B implies A" .  或者更常用一個箭頭符號來表示 "B $\Rightarrow$  A"  現在針對第二個部分  A only if B 此句意指  "If B is not true, then A is also not true". 所以如果已知 A is true,  那麼按照上句不難推得 B is also true 也就是說  A only if B  等價為 "If A is true then B is also true". 同樣,也可以寫作   "A implies B"   或者用箭頭表示  "A   $\Rightarrow$     B".

[數學分析] 淺談各種基本範數 (Norm)

這次要介紹的是數學上一個重要的概念: Norm: 一般翻譯成 範數 (在英語中 norm 有規範的意思,比如我們說normalization就是把某種東西/物品/事件 做 正規化,也就是加上規範使其正常化),不過個人認為其實翻譯成 範數 也是看不懂的...這邊建議把 Norm 想成長度就好 (事實上norm是長度的抽象推廣), 也許讀者會認為好端端的長度不用,為何又要發明一個 norm 來自討苦吃?? 既抽象又艱澀。 事實上想法是這樣的: 比如說現在想要比較兩個數字 $3$ , $5$ 之間的大小,則我們可以馬上知道 $ 3 < 5 $;同樣的,如果再考慮小數與無理數如 $1.8753$ 與 $\pi$,我們仍然可以比較大小 $1.8753 < \pi = 3.1415...$ 故可以發現我們有辦法對 "純量" 做明確的比大小,WHY? 因為前述例子中 $3$, $5$, $1.8753$ or $\pi$ 其各自的大小有辦法被 "measure "! 但是如果是現在考慮的是一組數字 我們如何去measure 其大小呢?? 比如說 \[x:=[1, -2, 0.1, 0 ]^T \]上式的大小該是多少? 是 $1$? $-2$? $0.1$??? 再者如果更過分一點,我們考慮一個矩陣 \[A = \left[ {\begin{array}{*{20}{c}} 1&2\\ 3&4 \end{array}} \right] \],想要知道這個矩陣的大小又該怎麼辦?? 是 $1$ ? $2$ 還是 $4$ ?..其實現階段我們說不清楚。 也正是如此,可以發現我們確實需要新的 "長度" 的定義來幫助我們如何去 measure 矩陣/向量/甚至是函數的大小。 故此,我們首先定義甚麼是Norm,(也就是把 "長度" or "大小" 的本質抽離出來) ================== Definition: Norm 考慮 $V$ 為一個向量空間(Vector space),則我們說  Norm 為一個函數 $||\cdot|| : V \rightarrow \mathbb{R}$ 且滿足下列性質