FACT: 任意週期為 $2 \pi$ 之連續函數 $f$ 必存在一組 trigonometric polynomial $P:=\sum\limits_{ - N}^N {{c_n}{e^{inx}}} $ 使得 對任意 $x \in \mathbb{R}$ 而言,
\[
|P(x) - f(x)| < \varepsilon
\]
但是上述定理無法告訴我們何時週期函數可以被表示成 Fourier Series,故下面的定理尤為重要,通常用此定理判斷某週期函數是否可以表示成 Fourier Series (Pointwise sense)。
================
Theorem 0: Pointwise Convergence of Fourier Series
若 對某些 $x \in [-\pi, \pi]$ 而言, 存在 $\delta >0$ 與 $M>0$ 使得 對任意 $t \in (-\delta, \delta)$
\[
|t| < \delta \Rightarrow |f(x+t) - f(x)| < M\;|t|
\]則 $ \displaystyle \lim_{N \rightarrow \infty}S_N(f;x) = f(x)$
===============
接著我們介紹另一個相對於 逐點收斂的重要的結果,稱作 L^2 收斂,亦即 Fourier Series 在 convergence in L^2。
================
Theorem 1: Fourier Series Converges in L^2
假設 $f, g$ 為 週期 $2 \pi$ 之 週期連續函數,且
\[
f(x) \sim \sum_{-\infty}^\infty c_n e^{inx}; \;\; g(x) \sim \sum_{-\infty}^\infty \gamma_n e^{inx}
\] 則
\[\mathop {\lim }\limits_{N \to \infty } \frac{1}{{2\pi }}\int_{ - \pi }^\pi {{{\left| {f\left( x \right) - {S_N}\left( {f;x} \right)} \right|}^2}} dx = \mathop {\lim }\limits_{N \to \infty } \left\| {f - {S_N}} \right\|_2^2 = 0\]其中 ${S_N}\left( {f;x} \right): = \sum\limits_{ - N}^N {{c_n}{e^{inx}}} $
================
Proof:
令 $\varepsilon >0$,目標要證明 $||f - S_N(f)||_2 < \varepsilon $。由於 $f$ 為週期 $2 \pi$ 之 週期連續函數,由 FACT 可知必存在一組 trigonometric polynomial $P $ 使得 對任意 $x \in \mathbb{R}$ 而言,
\[
|P(x) - f(x)| < \varepsilon \Rightarrow ||P - f||_2 < \varepsilon
\]若 $P$ 有階數為 $N_0$ 階,則由於 $S_N(f) $ 為最佳近似 $f$ (請參閱先前BLOG文章 或者 Rudin Theorem8.11) ,對 $N \ge N_0$,
\[
||f - S_N(f)||_2 \le ||f - P||_2 < \varepsilon \ \ \ \ \square
\]
我們有以下的 Parseval's identity:
=================
Theorem 2: Parseval's Theorem
假設 $f, g$ 為 週期 $2 \pi$ 之 週期連續函數,且
\[
f(x) \sim \sum_{-\infty}^\infty c_n e^{inx}; \;\; g(x) \sim \sum_{-\infty}^\infty \gamma_n e^{inx}
\] 則
\[\frac{1}{{2\pi }}\int_{ - \pi }^\pi {f\left( x \right){g^*}\left( x \right)} dx = \sum\limits_{ - \infty }^\infty {{c_n}\gamma _n^*} \]=================
Proof:
首先觀察
\[\begin{array}{l} \frac{1}{{2\pi }}\int_{ - \pi }^\pi {{S_N}\left( f \right){g^*}\left( x \right)} dx = \frac{1}{{2\pi }}\int_{ - \pi }^\pi {\sum\limits_{ - N}^N {{c_n}} {e^{inx}}{g^*}\left( x \right)} dx\\ \begin{array}{*{20}{c}} {}&{}&{}&{}&{}&{}&{}&{} \end{array} = \frac{1}{{2\pi }}\sum\limits_{ - N}^N {{c_n}} \underbrace {\int_{ - \pi }^\pi {{e^{inx}}{g^*}\left( x \right)} dx}_{ = \gamma _n^*2\pi } = \sum\limits_{ - N}^N {{c_n}} \gamma _n^* \end{array}
\]接著我們檢驗
\[\begin{array}{l}
\left| {\int_{ - \pi }^\pi {f\left( x \right){g^*}\left( x \right)} dx - \int_{ - \pi }^\pi {{S_N}\left( f \right){g^*}\left( x \right)} dx} \right| = \left| {\int_{ - \pi }^\pi {\left[ {f\left( x \right) - {S_N}\left( f \right)} \right]{g^*}\left( x \right)} dx} \right|\\
\begin{array}{*{20}{c}}
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}
\end{array} \le \int_{ - \pi }^\pi {\left| {\left[ {f\left( x \right) - {S_N}\left( f \right)} \right]{g^*}\left( x \right)} \right|} dx\\
{\rm{by}}\begin{array}{*{20}{c}}
{}
\end{array}{\rm{Schwarz}}\begin{array}{*{20}{c}}
{}
\end{array}{\rm{inequality}}\\
\begin{array}{*{20}{c}}
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}
\end{array} \le {\left( {\int_{ - \pi }^\pi {{{\left| {f\left( x \right) - {S_N}\left( f \right)} \right|}^2}} dx \cdot \int_{ - \pi }^\pi {{{\left| {{g^*}\left( x \right)} \right|}^2}} dx} \right)^{\frac{1}{2}}} \to 0
\end{array}\]當 $N \rightarrow \infty$。注意到上式收斂成立是因為我們 $\int |g|^2$ 有界 且 $\int |f - S_N| \rightarrow 0$ 當 $N \rightarrow \infty$ (由前面的 Theorem 1) $\square$
Comment:
一般而言,Parseval's Thoerem 泛指下式:令 前述 Parseval's Theorem $g(x) := f(x)$,則
\[\begin{array}{l}
\frac{1}{{2\pi }}\int_{ - \pi }^\pi {f\left( x \right){f^*}\left( x \right)} dx = \sum\limits_{n = - \infty }^\infty {{c_n}c_n^*} \\
\Rightarrow \frac{1}{{2\pi }}\int_{ - \pi }^\pi {{{\left| {f\left( x \right)} \right|}^2}} dx = \sum\limits_{n = - \infty }^\infty {{{\left| {{c_n}} \right|}^2}}
\end{array}\]
現在我們看個例子 說明 Parseval Theorem 怎麼使用。
Example:Application of the Parseval Theorem/ Pointwise Convergence Theorem
假設 $0 < \delta < \pi$,
\[f\left( x \right): = \left\{ \begin{array}{l}
1,\begin{array}{*{20}{c}}
{}&{}
\end{array}\left| x \right| < \delta \\
0,\begin{array}{*{20}{c}}
{}&{}
\end{array}\delta < \left| x \right| \le \pi
\end{array} \right.\]且對任意 $x \in \mathbb{R}$, $f(x+2 \pi) = f(x)$
(a) 試求 Fourier Series Coefficient
(b) 試證 $\sum\limits_{n = 1}^\infty {\frac{{{{\sin }^2}\left( {n\delta } \right)}}{{{n^2}\delta }}} = \frac{{\pi - \delta }}{2}$
Solution
在求解之前我們先確認 $f(x)$ 具有 Fourier Series,首先注意到 $f$ 為週期函數 (週期為 $2 \pi$) 接著我們檢驗其是否滿足我們的 逐點收斂 (Theorem 0) 條件:
給定 $x =0$ ,我們取題目中給定的 $\delta >0$ 檢驗對任意 $t \in (-\delta, \delta)$ ,觀察
\[\begin{array}{l}
\left| {f\left( {x + t} \right) - f\left( x \right)} \right| = \left| {f\left( t \right) - f\left( 0 \right)} \right|\\
\begin{array}{*{20}{c}}
{}&{}&{}&{}&{}&{}&{}&{}
\end{array} = \left| {1 - 1} \right| = 0 \le M\left| t \right|
\end{array}\]故我們知道其滿足 Theorem 0,亦即 $f$ 有 Fourier Series 且 $f(x) = \sum_{-\infty}^\infty c_n e^{inx}$ 現在我們可以開始解題:
(a) 首先針對 $c_0$ 可知
\[{c_0}: = \frac{1}{{2\pi }}\int_{ - \pi }^\pi {f\left( x \right)dx} = \frac{1}{{2\pi }}\int_{ - \delta }^\delta {1dx} = \frac{\delta }{\pi }\]
另外對 $n \neq 0$
\[\begin{array}{l}
{c_n}: = \frac{1}{{2\pi }}\int_{ - \pi }^\pi {f\left( x \right){e^{inx}}dx} = \frac{1}{{2\pi }}\int_{ - \delta }^\delta {1{e^{inx}}dx} \\
\begin{array}{*{20}{c}}
{}&{}&{}
\end{array} = \frac{1}{{n\pi }}\frac{{{e^{in\delta }} - {e^{ - in\delta }}}}{{2i}} = \frac{1}{{n\pi }}\sin \left( {n\delta } \right)
\end{array}\]注意到上述結果暗示了
\[f\left( x \right) = \frac{\delta }{\pi } + 2\sum\limits_{n = 1}^\infty {\frac{{\sin \left( {n\delta } \right)}}{{n\pi }}{e^{inx}}} \]
(b) 我們要證明 $\sum\limits_{n = 1}^\infty {\frac{{{{\sin }^2}\left( {n\delta } \right)}}{{{n^2}\delta }}} = \frac{{\pi - \delta }}{2}$ 注意到 part (a) 求出的 Fourier Series coefficient 的平方 出現在等號左方,暗示了我們可使用 Parserval's Theorem 亦即
\[\begin{array}{l}
\sum\limits_{n = - \infty }^\infty {{c_n}^2} = \frac{1}{{2\pi }}\int_{ - \pi }^\pi {{{\left| {f\left( x \right)} \right|}^2}} dx\\
\Rightarrow {c_0}^2 + 2\sum\limits_{n = 1}^\infty {{c_n}^2} = \frac{1}{{2\pi }}\int_{ - \delta }^\delta 1 dx\\
\Rightarrow {\left( {\frac{\delta }{\pi }} \right)^2} + 2\sum\limits_{n = 1}^\infty {{{\left( {\frac{{\sin \left( {n\delta } \right)}}{{n\pi }}} \right)}^2}} = \frac{\delta }{\pi }\\
\Rightarrow \sum\limits_{n = 1}^\infty {\left( {\frac{{{{\sin }^2}\left( {n\delta } \right)}}{{{n^2}\delta }}} \right)} = \frac{{\pi - \delta }}{2}
\end{array}\]
\[\begin{array}{l} \frac{1}{{2\pi }}\int_{ - \pi }^\pi {{S_N}\left( f \right){g^*}\left( x \right)} dx = \frac{1}{{2\pi }}\int_{ - \pi }^\pi {\sum\limits_{ - N}^N {{c_n}} {e^{inx}}{g^*}\left( x \right)} dx\\ \begin{array}{*{20}{c}} {}&{}&{}&{}&{}&{}&{}&{} \end{array} = \frac{1}{{2\pi }}\sum\limits_{ - N}^N {{c_n}} \underbrace {\int_{ - \pi }^\pi {{e^{inx}}{g^*}\left( x \right)} dx}_{ = \gamma _n^*2\pi } = \sum\limits_{ - N}^N {{c_n}} \gamma _n^* \end{array}
\]接著我們檢驗
\[\begin{array}{l}
\left| {\int_{ - \pi }^\pi {f\left( x \right){g^*}\left( x \right)} dx - \int_{ - \pi }^\pi {{S_N}\left( f \right){g^*}\left( x \right)} dx} \right| = \left| {\int_{ - \pi }^\pi {\left[ {f\left( x \right) - {S_N}\left( f \right)} \right]{g^*}\left( x \right)} dx} \right|\\
\begin{array}{*{20}{c}}
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}
\end{array} \le \int_{ - \pi }^\pi {\left| {\left[ {f\left( x \right) - {S_N}\left( f \right)} \right]{g^*}\left( x \right)} \right|} dx\\
{\rm{by}}\begin{array}{*{20}{c}}
{}
\end{array}{\rm{Schwarz}}\begin{array}{*{20}{c}}
{}
\end{array}{\rm{inequality}}\\
\begin{array}{*{20}{c}}
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}
\end{array} \le {\left( {\int_{ - \pi }^\pi {{{\left| {f\left( x \right) - {S_N}\left( f \right)} \right|}^2}} dx \cdot \int_{ - \pi }^\pi {{{\left| {{g^*}\left( x \right)} \right|}^2}} dx} \right)^{\frac{1}{2}}} \to 0
\end{array}\]當 $N \rightarrow \infty$。注意到上式收斂成立是因為我們 $\int |g|^2$ 有界 且 $\int |f - S_N| \rightarrow 0$ 當 $N \rightarrow \infty$ (由前面的 Theorem 1) $\square$
Comment:
一般而言,Parseval's Thoerem 泛指下式:令 前述 Parseval's Theorem $g(x) := f(x)$,則
\[\begin{array}{l}
\frac{1}{{2\pi }}\int_{ - \pi }^\pi {f\left( x \right){f^*}\left( x \right)} dx = \sum\limits_{n = - \infty }^\infty {{c_n}c_n^*} \\
\Rightarrow \frac{1}{{2\pi }}\int_{ - \pi }^\pi {{{\left| {f\left( x \right)} \right|}^2}} dx = \sum\limits_{n = - \infty }^\infty {{{\left| {{c_n}} \right|}^2}}
\end{array}\]
現在我們看個例子 說明 Parseval Theorem 怎麼使用。
Example:Application of the Parseval Theorem/ Pointwise Convergence Theorem
假設 $0 < \delta < \pi$,
\[f\left( x \right): = \left\{ \begin{array}{l}
1,\begin{array}{*{20}{c}}
{}&{}
\end{array}\left| x \right| < \delta \\
0,\begin{array}{*{20}{c}}
{}&{}
\end{array}\delta < \left| x \right| \le \pi
\end{array} \right.\]且對任意 $x \in \mathbb{R}$, $f(x+2 \pi) = f(x)$
(a) 試求 Fourier Series Coefficient
(b) 試證 $\sum\limits_{n = 1}^\infty {\frac{{{{\sin }^2}\left( {n\delta } \right)}}{{{n^2}\delta }}} = \frac{{\pi - \delta }}{2}$
Solution
在求解之前我們先確認 $f(x)$ 具有 Fourier Series,首先注意到 $f$ 為週期函數 (週期為 $2 \pi$) 接著我們檢驗其是否滿足我們的 逐點收斂 (Theorem 0) 條件:
給定 $x =0$ ,我們取題目中給定的 $\delta >0$ 檢驗對任意 $t \in (-\delta, \delta)$ ,觀察
\[\begin{array}{l}
\left| {f\left( {x + t} \right) - f\left( x \right)} \right| = \left| {f\left( t \right) - f\left( 0 \right)} \right|\\
\begin{array}{*{20}{c}}
{}&{}&{}&{}&{}&{}&{}&{}
\end{array} = \left| {1 - 1} \right| = 0 \le M\left| t \right|
\end{array}\]故我們知道其滿足 Theorem 0,亦即 $f$ 有 Fourier Series 且 $f(x) = \sum_{-\infty}^\infty c_n e^{inx}$ 現在我們可以開始解題:
(a) 首先針對 $c_0$ 可知
\[{c_0}: = \frac{1}{{2\pi }}\int_{ - \pi }^\pi {f\left( x \right)dx} = \frac{1}{{2\pi }}\int_{ - \delta }^\delta {1dx} = \frac{\delta }{\pi }\]
另外對 $n \neq 0$
\[\begin{array}{l}
{c_n}: = \frac{1}{{2\pi }}\int_{ - \pi }^\pi {f\left( x \right){e^{inx}}dx} = \frac{1}{{2\pi }}\int_{ - \delta }^\delta {1{e^{inx}}dx} \\
\begin{array}{*{20}{c}}
{}&{}&{}
\end{array} = \frac{1}{{n\pi }}\frac{{{e^{in\delta }} - {e^{ - in\delta }}}}{{2i}} = \frac{1}{{n\pi }}\sin \left( {n\delta } \right)
\end{array}\]注意到上述結果暗示了
\[f\left( x \right) = \frac{\delta }{\pi } + 2\sum\limits_{n = 1}^\infty {\frac{{\sin \left( {n\delta } \right)}}{{n\pi }}{e^{inx}}} \]
(b) 我們要證明 $\sum\limits_{n = 1}^\infty {\frac{{{{\sin }^2}\left( {n\delta } \right)}}{{{n^2}\delta }}} = \frac{{\pi - \delta }}{2}$ 注意到 part (a) 求出的 Fourier Series coefficient 的平方 出現在等號左方,暗示了我們可使用 Parserval's Theorem 亦即
\[\begin{array}{l}
\sum\limits_{n = - \infty }^\infty {{c_n}^2} = \frac{1}{{2\pi }}\int_{ - \pi }^\pi {{{\left| {f\left( x \right)} \right|}^2}} dx\\
\Rightarrow {c_0}^2 + 2\sum\limits_{n = 1}^\infty {{c_n}^2} = \frac{1}{{2\pi }}\int_{ - \delta }^\delta 1 dx\\
\Rightarrow {\left( {\frac{\delta }{\pi }} \right)^2} + 2\sum\limits_{n = 1}^\infty {{{\left( {\frac{{\sin \left( {n\delta } \right)}}{{n\pi }}} \right)}^2}} = \frac{\delta }{\pi }\\
\Rightarrow \sum\limits_{n = 1}^\infty {\left( {\frac{{{{\sin }^2}\left( {n\delta } \right)}}{{{n^2}\delta }}} \right)} = \frac{{\pi - \delta }}{2}
\end{array}\]
沒有留言:
張貼留言