跳到主要內容

[機率論] 指示函數 ( Indicator function)

這次要介紹的是 指示函數( Indicator function),這個特殊函數在機率論與相關應用中佔有重要的腳色,其重要程度類似 step function, dirac function 在控制理論中的位置。 (事實上 Indicator function是更廣義的特殊函數,我們可以透過 Indicator function 來建構/逼近 各種函數)

==========================
Definition : Indicator Function of a Set A
一個 Indicator function of set A,我們用 $1_{A}(x)$表示,此函數定義如下
\[{1_A}\left( x \right): = \left\{ \begin{array}{l}
1,\begin{array}{*{20}{c}}
{}
\end{array}x \in A\\
0,\begin{array}{*{20}{c}}
{}
\end{array}x \notin A
\end{array} \right.
\]========================

以下是一些 Indicator function的例子

Example 1. : $1_{[a,b)}(x)$

Example 2. : $1_{(a,b]}(x)$
Example 3. Unit-Step Function
由單位步階函數定義:
\[
u\left( x \right): = \left\{ \begin{array}{l} 1,\begin{array}{*{20}{c}} {} \end{array}x \ge 0\\ 0,\begin{array}{*{20}{c}} {} \end{array}x < 0 \end{array} \right.
\]我們可以把上式用 Indicator function表示:亦即 $u(x) = I_{ [0,\infty)}(x)$。


接著我們看個一些結果:
Theorem 1:
對任意 $A,B \subset \Omega$,下列結果成立:
\[\left\{ \begin{array}{l}
A = B \Leftrightarrow {1_A} = {1_B}\\
A \subset B \Leftrightarrow {1_A} \le {1_B}\\
A = \emptyset  \Leftrightarrow {1_A} = 0\\
A = \Omega  \Leftrightarrow {1_A} = 1
\end{array} \right.\]
Proof: omitted

Theorem 2:
對任意 $A,B \subset \Omega$,下列結果成立:
\[\left\{ \begin{array}{l}
{1_{A \cap B}} = \min \left\{ {{1_A},{1_B}} \right\}\\
{1_{A \cup B}} = \max \left\{ {{1_A},{1_B}} \right\}\\
{1_{{A^c}}} = 1 - {1_A}\\
{1_{\mathop {\lim \inf }\limits_n {A_n}}} = \mathop {\lim \inf }\limits_n {1_{{A_n}}}\\
{1_{\mathop {\lim \sup }\limits_n {A_n}}} = \mathop {\lim \sup }\limits_n {1_{{A_n}}}
\end{array} \right.\]
Proof: omitted

上述定理的第二項,如果 $A,B$ 為 disjoint 則我們可以有一個非常好用的結果:

FACT:
如果 $A, B$ 為 disjoint 則
\[
1_{A \cup B} = 1_A + 1_B
\]
Proof: omitted

再者我們要介紹 Indicator function 一個重要的性質,就是任意機率測度都可以透過 Indicator function 用期望值表示:

現在考慮 $X$ 為在機率空間 $(\Omega, \mathcal{F}, P)$ 的隨機變數且 $A \subset \mathbb{R}$ 為實數中任意集合,則 $1_{A}(X)$ 為一個離散隨機變數且取值僅為 0 或者1。故如果我們計算其期望值則可得到
\[
E\left[ {{1_A}\left( X \right)} \right] = 1 \cdot P\left( {X \in A} \right) + 0 \cdot P\left( {X \notin A} \right) = P\left( {X \in A} \right) \ \ \ \ (*)
\]注意到上式中 機率測度 $P(X \in A):=P(\omega \in \Omega: X(\omega) \in A)$

Comments:
1. 如果我們考慮 期望值 $E[\cdot]$ 的抽象定義 (期望值用 Lebesgue integral 定義):
若 $X$ 為在機率空間 $(\Omega, \mathcal{F}, P)$ 的隨機變數,則 $X$ 的 期望值定義為Lebesgue integral
\[
E[X] := \int_{\Omega} X dP
\]若上述積分為well-defined。

上式中 $\Omega$ 為樣本空間, $\mathcal{F}$ 為 $\sigma$-algebra (可簡單視為事件的集合),$P$ 為機率測度 $P: \mathcal{F} \rightarrow [0,1]$

故之前討論的式 $(*)$ 可以被進一步改寫
\[
P\left( {X \in A} \right) = E\left[ {{1_A}\left( X \right)} \right] = \int_{\Omega} 1_{A}(X) dP = \int_{A} dP
\]
2. 對 $A, B \subset \mathbb{R}$,則 $1_{A} \cdot 1_{B} =1_{A \cap B}$


Remarks:
在實變函數論 或者 測度論中,上述 指示函數 一般被稱作 特性函數(characteristic function)。

留言

這個網誌中的熱門文章

[數學分析] 什麼是若且唯若 "if and only if"

數學上的 if and only if  ( 此文不討論邏輯學中的 if and only if,只討論數學上的 if and only if。) 中文翻譯叫做  若且唯若 (or 當且僅當) , 記得當初剛接觸這個詞彙的時候,我是完全不明白到底是甚麼意思,查了翻譯也是愛莫能助,畢竟有翻跟沒翻一樣,都是有看沒有懂。 在數學上如果看到 if and only if  這類的句子,其實是表示一種 雙條件句 ,通常可以直接將其視為" 定義(Definition)" 待之,今天要分享的是這樣的一個句子如何用比較直觀的方法去看他 假設我們現在有 兩個邏輯陳述句 A 與  B. 注意到,在此我們不必考慮這兩個陳述句到底是什麼,想表達什麼,或者到底是否為真(true),這些都不重要。只要知道是兩個陳述即可。 現在,考慮新的陳述:  "A if and only if B" 好了,現在主角登場,我們可以怎麼看待這個句子呢? 事實上我們可以很直覺的把這句子拆成兩部分看待,也就是 "( A if B ) and ( A only if B )" 那麼先針對第一個部分  A if B  來看, 其實這句就是說  if B then A, 更直白一點就是 "if B is true, then A is also true".  在數學上等價可以寫為 "B implies A" .  或者更常用一個箭頭符號來表示 "B $\Rightarrow$  A"  現在針對第二個部分  A only if B 此句意指  "If B is not true, then A is also not true". 所以如果已知 A is true,  那麼按照上句不難推得 B is also true 也就是說  A only if B  等價為 "If A is true then B is also true". 同樣,也可以寫作   "A implies B"   或者用箭頭表示  "A   $\Rightarrow$     B".

[數學分析] 淺談各種基本範數 (Norm)

這次要介紹的是數學上一個重要的概念: Norm: 一般翻譯成 範數 (在英語中 norm 有規範的意思,比如我們說normalization就是把某種東西/物品/事件 做 正規化,也就是加上規範使其正常化),不過個人認為其實翻譯成 範數 也是看不懂的...這邊建議把 Norm 想成長度就好 (事實上norm是長度的抽象推廣), 也許讀者會認為好端端的長度不用,為何又要發明一個 norm 來自討苦吃?? 既抽象又艱澀。 事實上想法是這樣的: 比如說現在想要比較兩個數字 $3$ , $5$ 之間的大小,則我們可以馬上知道 $ 3 < 5 $;同樣的,如果再考慮小數與無理數如 $1.8753$ 與 $\pi$,我們仍然可以比較大小 $1.8753 < \pi = 3.1415...$ 故可以發現我們有辦法對 "純量" 做明確的比大小,WHY? 因為前述例子中 $3$, $5$, $1.8753$ or $\pi$ 其各自的大小有辦法被 "measure "! 但是如果是現在考慮的是一組數字 我們如何去measure 其大小呢?? 比如說 \[x:=[1, -2, 0.1, 0 ]^T \]上式的大小該是多少? 是 $1$? $-2$? $0.1$??? 再者如果更過分一點,我們考慮一個矩陣 \[A = \left[ {\begin{array}{*{20}{c}} 1&2\\ 3&4 \end{array}} \right] \],想要知道這個矩陣的大小又該怎麼辦?? 是 $1$ ? $2$ 還是 $4$ ?..其實現階段我們說不清楚。 也正是如此,可以發現我們確實需要新的 "長度" 的定義來幫助我們如何去 measure 矩陣/向量/甚至是函數的大小。 故此,我們首先定義甚麼是Norm,(也就是把 "長度" or "大小" 的本質抽離出來) ================== Definition: Norm 考慮 $V$ 為一個向量空間(Vector space),則我們說  Norm 為一個函數 $||\cdot|| : V \rightarrow \mathbb{R}$ 且滿足下列性質