8/19/2012

[電子學] 淺談雙極性接面電晶體(BJTs) 的基本想法。

真實電路中,常見的兩端點元件 e.g., 電阻、電感、電容、或者 二極體 (diode),但這些元件並無法將輸出端的電流或者電壓進行放大。故我們需要一個電路元件 可以幫助我們辦到這項目標。

比如說現在要建構一個新元件具備 電流控制 的電流放大器(current amplifier)元件。那麼這個元件應該具備怎樣的特性呢?? 我們首先繪製下圖


中間的 問號方塊即為我們要設計的三端子元件。目的是要透過電流 $i_s$ 來得到放大的輸出電流 $i_o$ 。現在我們把方塊內部繪製如下:



上圖中 $R_L$ 表示負載 (e.g., 馬達)。途中藍色線框標示處表示我們要設計的電流放大元件,觀察內部會發現有幾個設計參數待定:

  • 輸入電阻 $R_i$
  • 輸出電阻 $R_o$
  • 放大倍數 $A$

由於 $A$ 表示 放大倍數,我們會希望 $i_i$ 被放大 $A$ 倍; i.e., $A i_i$。

現在觀察上圖左方電路,計算 $i_i$ 電流:由分流定理我們可知
\[
i_i = i_s \frac{R_s}{R_s + R_i}
\]觀察上式,若輸入電阻 $R_i$ 設計成很小,則我們可以得到 $i_i \cong i_s$ ($i_s$ 都流經電阻 $R_i$ ,沒有損失太多電流)。

現在觀察上圖右方電路,此時輸入到右方電路的電流為 $A i_i$,我們可以計算 輸出電流 $i_o$,由分流定理可知
\[
i_o = (A i_i) \cdot \frac{R_o}{R_o + R_L}
\]故若 $R_o$ 選定很大,則我們可以得到較大輸出電流 $i_o$。

結論:對於電流放大元件的需求:

  1. 輸入電阻 $R_i$ 要小
  2. 輸出電組 $R_o$ 要大
  3. 放大倍數 $A$ 要大 ($\neq 0$)

那麼我們如何滿足上述條件呢? 透過 diode 單向導通的想法即可達成:首先取兩組diode,現在對其中一組 diode順向偏壓 (diode導通,此時等同得到輸入電阻很小),且對另外一組diode逆向偏壓 (diode不通,等同輸出電阻很大的效果),現在將兩組diode合併。如下圖 npn 電晶體:



另外亦可接成 npn 電晶體,將 Forward bias 換成 reverse bias 即可。在此不再贅述。

沒有留言:

張貼留言

[數學分析] 連續函數族的逐點上包絡函數不一定連續

連續函數有諸多用途,一般在參數最佳化領域中常見的情況是考慮所謂的 上包絡函數(upper envelope function)。 Definition:  定義函數族 \(\{f_t : t \in T\} \) 其中 \(T\) 為 index set 並考慮對任意 \(x ...