定義 $\{ W_t\}$ 為標準布朗運動。現給定常數邊界 $b >0$,定義 停止時間 (stopping time) 或稱 首次穿越時間 (First passage time)
\[
\tau_b := \inf \{ t : W_t \ge b\}
\]
我們想要計算 $P(\tau_b \le t) = ?$
上述問題稱為 首次穿越時間問題 (First passage time (FPT) problem)
=========
那麼如何求解上述FPT問題呢?
首先注意到
\[
\{ \tau_b \le t, W_t >b \} \equiv \{ W_t > b\}
\] 上式成立由於布朗運動的 sample path 連續性 (Path Continuity),與 $W(0)=0$,故 $W_t > b \Rightarrow \tau_b \le t$,亦即 $\{ W_t > b\} \subset \{ \tau_b \le t\}$。故
\[
\{ \tau_b \le t, W_t >b \} \equiv \{ W_t > b\}
\]
現在我們計算 $P(\tau_b \le t) $,利用 Law of total Probability 可得
\[\begin{array}{l}
P({\tau _b} \le t) = P({\tau _b} \le t,{W_t} < b) + P({\tau _b} \le t,{W_t} > b) \\
\begin{array}{*{20}{c}}
{}&{}&{}&{}
\end{array} = P({W_t} < b|{\tau _b} \le t)P\left( {{\tau _b} \le t} \right) + P({\tau _b} \le t,{W_t} > b)\\
\begin{array}{*{20}{c}}
{}&{}&{}&{}
\end{array} = P({W_t} < b|{\tau _b} \le t)P\left( {{\tau _b} \le t} \right) + P({W_t} > b) ....\ \ \ \ (*)
\end{array}
\]上式中的 $P(W_t > b)$ 可以由布朗運動定義計算出來,因為 $W_t \sim \cal{N}(0,t)$,故
\[
P(W_t > b) = 1 - P(W_t \le b) = 1 - \Phi(\frac{b}{\sqrt{t}})
\] 其中 $\Phi(\cdot)$ 為 Standard Normal Cumulative Distribution Function.
接著,我們計算 $P({W_t} < b|{\tau _b} \le t)$,事實上由 Path Continuity 我們可知 $W_{\tau_b} = b$,故在給定 $\tau_b \le t$ 的時候,隨機過程在時刻 $t$ 時 高於 邊界 $b$ 的機率 與 低於 邊界 $b$ 的機率應該相同;亦即
\[
P({W_t} < b|{\tau _b} \le t) = \frac{1}{2}
\]
(上述結果稱為 Reflection Principle ,嚴格證明需要利用 Strong Markov property,但此處我們略過)。下圖亦顯示了 Reflection Principle 的想法
故我們將上述結果代回 $(*)$,可得
\[\begin{array}{l}
P({\tau _b} \le t) = P({W_t} < b|{\tau _b} \le t)P\left( {{\tau _b} \le t} \right) + P({W_t} > b)\\
\Rightarrow P({\tau _b} \le t) = \frac{1}{2}P\left( {{\tau _b} \le t} \right) + P({W_t} > b)\\
\Rightarrow P\left( {{\tau _b} \le t} \right) = 2P({W_t} > b) = 2\left( {1 - \Phi \left( {\frac{b}{{\sqrt t }}} \right)} \right)
\end{array}\]
Ref: Joseph T. Chang, "Stochastic Processes Lecture Note" Yale University.
\[
\tau_b := \inf \{ t : W_t \ge b\}
\]
我們想要計算 $P(\tau_b \le t) = ?$
上述問題稱為 首次穿越時間問題 (First passage time (FPT) problem)
=========
那麼如何求解上述FPT問題呢?
首先注意到
\[
\{ \tau_b \le t, W_t >b \} \equiv \{ W_t > b\}
\] 上式成立由於布朗運動的 sample path 連續性 (Path Continuity),與 $W(0)=0$,故 $W_t > b \Rightarrow \tau_b \le t$,亦即 $\{ W_t > b\} \subset \{ \tau_b \le t\}$。故
\[
\{ \tau_b \le t, W_t >b \} \equiv \{ W_t > b\}
\]
現在我們計算 $P(\tau_b \le t) $,利用 Law of total Probability 可得
\[\begin{array}{l}
P({\tau _b} \le t) = P({\tau _b} \le t,{W_t} < b) + P({\tau _b} \le t,{W_t} > b) \\
\begin{array}{*{20}{c}}
{}&{}&{}&{}
\end{array} = P({W_t} < b|{\tau _b} \le t)P\left( {{\tau _b} \le t} \right) + P({\tau _b} \le t,{W_t} > b)\\
\begin{array}{*{20}{c}}
{}&{}&{}&{}
\end{array} = P({W_t} < b|{\tau _b} \le t)P\left( {{\tau _b} \le t} \right) + P({W_t} > b) ....\ \ \ \ (*)
\end{array}
\]上式中的 $P(W_t > b)$ 可以由布朗運動定義計算出來,因為 $W_t \sim \cal{N}(0,t)$,故
\[
P(W_t > b) = 1 - P(W_t \le b) = 1 - \Phi(\frac{b}{\sqrt{t}})
\] 其中 $\Phi(\cdot)$ 為 Standard Normal Cumulative Distribution Function.
接著,我們計算 $P({W_t} < b|{\tau _b} \le t)$,事實上由 Path Continuity 我們可知 $W_{\tau_b} = b$,故在給定 $\tau_b \le t$ 的時候,隨機過程在時刻 $t$ 時 高於 邊界 $b$ 的機率 與 低於 邊界 $b$ 的機率應該相同;亦即
\[
P({W_t} < b|{\tau _b} \le t) = \frac{1}{2}
\]
(上述結果稱為 Reflection Principle ,嚴格證明需要利用 Strong Markov property,但此處我們略過)。下圖亦顯示了 Reflection Principle 的想法
故我們將上述結果代回 $(*)$,可得
\[\begin{array}{l}
P({\tau _b} \le t) = P({W_t} < b|{\tau _b} \le t)P\left( {{\tau _b} \le t} \right) + P({W_t} > b)\\
\Rightarrow P({\tau _b} \le t) = \frac{1}{2}P\left( {{\tau _b} \le t} \right) + P({W_t} > b)\\
\Rightarrow P\left( {{\tau _b} \le t} \right) = 2P({W_t} > b) = 2\left( {1 - \Phi \left( {\frac{b}{{\sqrt t }}} \right)} \right)
\end{array}\]
Ref: Joseph T. Chang, "Stochastic Processes Lecture Note" Yale University.
留言
張貼留言