11/26/2015

[數學分析] 三角多項式 與 三角級數 (1)

三角多項式表示一個函數可以透過 多個三角函數 方式表示,具體定義如下。

============================
Definition: Trigonometric polynomial
我們說 $f(x)$ 為一個 三角多項式( trigonometric polynomial) 若 $f$ 具有下列形式:
\[
f(x) := \sum_{n=0}^N a_n \cos(nx) + b_n \sin (nx) \ \ \ \ \ (*)
\]其中 $a_n, b_n \in \mathbb{C}$ 且 $x \in \mathbb{R}$。;或者上式可等價寫為 複數形式
\[
f(x) := \sum_{n=-N}^N c_n e^{i n x}
\]對任意 $c_n \in \mathbb{C}$ 與 $x \in \mathbb{R}$
============================

Comment:
注意到對於 式子 $(*)$ 可改寫為
\[f(x) = \sum\limits_{n = 0}^N {{a_n}} \cos (nx) + {b_n}\sin (nx) = {a_0} + \sum\limits_{n = 1}^N {{a_n}} \cos (nx) + {b_n}\sin (nx)\]

==========================
FACT 1: Trigonometric polynomial $f$ 為週期函數且週期為 $2 \pi$。
==========================

Proof: 亦即我們要證明 $f(x+2 \pi) = f(x)$,故
\[\begin{array}{l}
f(x + 2\pi ): = \sum\limits_{n =  - N}^N {{c_n}} {e^{in\left( {x + 2\pi } \right)}} = \sum\limits_{n =  - N}^N {{c_n}} {e^{in\left( x \right)}}{e^{in\left( {2\pi } \right)}}\\
\begin{array}{*{20}{c}}
{}&{}&{}&{}&{}&{}
\end{array} = \sum\limits_{n =  - N}^N {{c_n}} {e^{in\left( x \right)}}\underbrace {\left[ {\cos n2\pi  + i\sin n2\pi } \right]}_{ = 1} = \sum\limits_{n =  - N}^N {{c_n}} {e^{in\left( x \right)}} = f\left( x \right) \ \ \ \ \square
\end{array}\]

==========================
FACT 2: 下列等式成立:
\[\frac{1}{{2\pi }}\int_{ - \pi }^\pi  {{e^{imx}}} {e^{ - inx}}dx = \left\{ \begin{array}{l}
0,\begin{array}{*{20}{c}}
{}
\end{array}n \ne m\\
1,\begin{array}{*{20}{c}}
{}
\end{array}n = m
\end{array} \right.\]==========================
Proof: omitted.

==========================
FACT 3: Trigonometric polynomial $f$ 的係數 $c_n$ 可由下列積分決定:
\[
c_n = \frac{1}{2 \pi}\int_{-\pi}^\pi f(x) e^{-inx}dx
\]==========================
Proof:
\[\begin{array}{*{20}{l}}
{\frac{1}{{2\pi }}\int_{ - \pi }^\pi  f (x){e^{ - inx}}dx = \frac{1}{{2\pi }}\int_{ - \pi }^\pi  {\sum\limits_{m =  - N}^N {{c_m}} {e^{imx}}} {e^{ - inx}}dx}\\
{\begin{array}{*{20}{c}}
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}
\end{array} = \frac{1}{{2\pi }}\sum\limits_{m =  - N}^N {{c_m}} \int_{ - \pi }^\pi  {{e^{imx}}} {e^{ - inx}}dx}
\end{array}\]利用 FACT 2 可得
\[\frac{1}{{2\pi }}\int_{ - \pi }^\pi  f (x){e^{ - inx}}dx = \frac{1}{{2\pi }}\sum\limits_{m =  - N}^N {{c_m}} \underbrace {\int_{ - \pi }^\pi  {{e^{imx}}} {e^{ - inx}}dx}_{ = 1\begin{array}{*{20}{c}}
{}
\end{array}if\begin{array}{*{20}{c}}
{}
\end{array}n = m} = {c_n} \ \ \ \ \square\]

===================
FACT 4: Trigonometric polynomial $f$ 為 實數函數 若且唯若 $c_n^* = c_{-n}$ ( 其中$( \cdot )^*$) 表示 complex conjugate。
===================

Proof:
$(\Rightarrow)$ 假設 Trigonometric polynomial $f$ 為 Real-valued 函數,我們要證明 $c_n^* = c_{-n}$ 。故由於 $f$ 為 Real-valued 函數,我們有 $f^* = f$;亦即
\[\begin{array}{l}
c_n^* = {\left( {\frac{1}{{2\pi }}\int_{ - \pi }^\pi  f (x){e^{ - inx}}dx} \right)^*} = \frac{1}{{2\pi }}\int_{ - \pi }^\pi  {{f^*}} (x){e^{inx}}dx\\
\begin{array}{*{20}{c}}
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}
\end{array} = \frac{1}{{2\pi }}\int_{ - \pi }^\pi  f (x){e^{inx}}dx = \frac{1}{{2\pi }}\int_{ - \pi }^\pi  {\sum\limits_{m =  - N}^N {{c_m}} {e^{imx}}} {e^{inx}}dx\\
\begin{array}{*{20}{c}}
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}
\end{array} = \frac{1}{{2\pi }}\sum\limits_{m =  - N}^N {{c_m}} \int_{ - \pi }^\pi  {{e^{imx}}} {e^{inx}}dx = {c_{ - n}}.
\end{array}\]

$(\Leftarrow)$ 假設  $c_n^* = c_{-n}$ ,我們要證 Trigonometric polynomial $f$ 為 Real-valued 函數。亦即要證明 $f^* = f$。現在觀察
\[{f^*}(x) = {\left( {\sum\limits_{n =  - N}^N {{c_n}} {e^{inx}}} \right)^*} = \sum\limits_{n =  - N}^N {c_n^*} {e^{ - inx}} = \sum\limits_{n =  - N}^N {c_{ - n}^{}} {e^{ - inx}}\]令 $m:=-n$ 可得
\[{f^*}(x) = \sum\limits_{n =  - N}^N {c_n^*} {e^{ - inx}} = \sum\limits_{m =  - N}^N {c_m^{}} {e^{imx}} = f\left( x \right) .\ \ \ \ \square
\]

接著我們可以定義 Trigonometric Series 如下:

========================
Definition: Trigonometric Series 
我們說 Trigonometric Series 為具有下列形式的無窮級數
\[
\sum_{n=-\infty}^\infty c_n e^{-inx}
\]且由先前 Trigonometric polynomial 的係數定法,我們可以一樣定義對一個週期函數 $f$ 的 $m$-th Fourier Coefficient :
\[
c_m := \frac{1}{2 \pi} \int_{-\pi}^\pi f(x) e^{-imx}dx
\]========================

========================
Definition: Fourier Series 
Fourier Series 為一個 Trigonometric Series 且其係數為 Fourier coefficient of $f$,我們將 Fourier Series 記做
\[
f \sim \sum_{n = -\infty}^\infty c_n e^{inx}
\]========================
注意:上述並非等號;單純表示 $c_n$ 是來自 $f$ 的 Fourier Series coefficient。

故我們想問 "何時可以讓 $f$ 與 Fourier Series 等號成立? " 或者說 基於怎樣的測量基準之下,此兩者可以被適當的逼近?

我們將回答此問題於更廣義的 Fourier Series 之上,在後面的文章會在做介紹。


沒有留言:

張貼留言

[隨筆] A+焦慮的世代

接住A+世代學生 當了老師之後發現要"接住"學生確實不容易,撇開老師自身可能也有需要被接住的問題不談。我這幾年常常感受到這世代的學生們有著很大的徬徨,不太清楚未來的方向,但是卻有著非得要拿到A/A+不可的糾結,於是課優先選甜涼課,實習競賽投好投滿。好像看著同學...