跳到主要內容

[數學分析] 三角多項式 與 三角級數 (2)- Generalized Fourier Series

現在我們定義廣義 Fourier Series :

=================
Definition: (Orthogonal System of Functions)
令 $\{\phi_n\}$, $n \in \mathbb{N}$ 為在 $[a,b]$ 上 的 Complex-valued 函數 sequence 且滿足下列積分
\[
\int_a^b \phi_n(x) \phi_m^*(x) dx =0, \;\; \text{ if $n \neq m$}
\]那麼我們稱 $\{\phi_n\}$ 為在 $[a,b]$ 上 orthogonal 或稱 (orthogonal system of functions on $[a,b]$) 。除此之外,若積分
\[
\int_a^b \phi_n(x) \phi_n^*(x) dx =1
\]我們稱 $\{\phi_n\}$ 為在 $[a,b]$ 上 orthonormal 或稱 (orthonormal system of functions on $[a,b]$) 。
=====================

Comments: 
一般而言,若我們取 $\{\phi_n\}$  $n \in \mathbb{N}$ 為在 $[0, 2\pi]$ 上 的 Complex-valued 函數 sequence 且滿足 $\phi_n(x):= exp(inx)$  則讀者可自行驗證此 函數 sequence 為 orthogonal


=====================
Definition: (n-th Fourier Coefficient of $f$)
若 $\{\phi_n\}$ 為 orthonormal on $[a,b]$ 且 對任意 $n \in \mathbb{N}$,
\[
c_n:=\int_a^b f(x) \phi_n^*(x) dx
\]我們稱 $c_n$ 為 $n$-th Fourier coefficient of $f$ (relative to $\{\phi_n\}$)
=====================
上述 $^*$ 為 complex conjugate。


=====================
Definition: Generalized Fourier Series
Generalized Fourier Series of $f$ (relative to $\{\phi_n\}$) 定義為
\[
f(x) \sim \sum_{n=1}^\infty c_n \phi_n(x)
\]其中 $c_n=\int_a^b f(x) \phi_n^*(x) dx $。
====================

Theorem: Bessel's inequality
若 $\{\phi_n\}$ 為 orthnormal on $[a,b]$ 且若 $f(x) \sim \sum_{n=1}^\infty c_n \phi_n(x)$ 則 \[
\sum_{n=1}^\infty |c_n|^2 \le \int_a^b |f(x)|^2 dx
\]


====================
Theorem: Best Approximation of Fourier Series 
令 $\{\phi_n\}$ 為在 $[a,b]$ 上 的 Complex-valued 函數 sequence ,且 $\phi_n$ 為 orthogonal。現在定義 $n$-th partial sum of Fourier Series of $f$ 如下
\[
s_n (x):= \sum_{m=1}^n c_m \phi_m(x)
\]且令 $t_n$ 為任意 series 如下
\[
t_n(x) := \sum_{m=1}^n \gamma_m \phi_m(x)
\]其中 $\gamma_n \in \mathbb{C}$ 則
\[
\int_a^b |f (x)- s_n(x)|^2 dx \le \int_a^b |f(x) - t_n(x)|^2 dx
\] 且 上式等式成立 若且為若 $\gamma_n = c_n$ 對任意 $n$。
==================

Proof:

\[
s_n (x):= \sum_{m=1}^n c_m \phi_m(x);\;\;\; t_n(x) := \sum_{m=1}^n \gamma_m \phi_m(x)
\]
我們首先證明下列不等式成立
\[
\int_a^b |f (x)- s_n(x)|^2 dx \le \int_a^b |f(x) - t_n(x)|^2 dx
\] 首先觀察
\[\begin{array}{l}
\int_a^b | f(x) - {t_n}(x){|^2}dx = \int_a^b {\left( {f(x) - {t_n}(x)} \right){{\left( {f(x) - {t_n}(x)} \right)}^*}} dx\\
\begin{array}{*{20}{c}}
{}&{}&{}&{}
\end{array} = \int_a^b {\left( {f(x){f^*}(x) - f(x){t_n}^*(x) - {t_n}(x){f^*}(x) + {t_n}(x){t_n}^*(x)} \right)} dx\\
\begin{array}{*{20}{c}}
{}&{}&{}&{}
\end{array} = \underbrace {\int_a^b {{{\left| {f(x)} \right|}^2}} dx}_{term1} - \underbrace {\int_a^b {f(x){t_n}^*(x)} dx}_{term2} - \underbrace {\int_a^b {{t_n}(x){f^*}(x)} dx}_{term3} + \underbrace {\int_a^b {{{\left| {{t_n}(x)} \right|}^2}} dx}_{term4} \ \ \ \ \ \ (*)
\end{array}\]接著對上式逐項觀察,首先檢驗 term 2:
\[\begin{array}{l}
\int_a^b {f(x){t_n}^*(x)} dx = {\int_a^b {f(x)\left[ {\sum\limits_{m = 1}^n {{\gamma _m}} {\phi _m}(x)} \right]} ^*}dx\\
\begin{array}{*{20}{c}}
{}&{}&{}&{}
\end{array} = \int_a^b {f(x)\sum\limits_{m = 1}^n {{\gamma _m}^*} {\phi _m}^*(x)} dx\\
\begin{array}{*{20}{c}}
{}&{}&{}&{}
\end{array} = \sum\limits_{m = 1}^n {{\gamma _m}^*} \underbrace {\int_a^b {f(x){\phi _m}^*(x)} dx}_{ = {c_m}}\\
\begin{array}{*{20}{c}}
{}&{}&{}&{}
\end{array} = \sum\limits_{m = 1}^n {{\gamma _m}^*} {c_m}
\end{array}\]
接著我們檢驗 term 3:
\[\begin{array}{l}
\int_a^b {{t_n}(x){f^*}(x)} dx = \int_a^b {\sum\limits_{m = 1}^n {{\gamma _m}} {\phi _m}(x){f^*}(x)} dx\\
\begin{array}{*{20}{c}}
{}&{}&{}&{}
\end{array} = \sum\limits_{m = 1}^n {{\gamma _m}} \underbrace {\int_a^b {{f^*}(x){\phi _m}(x)} dx}_{ = c_m^*}\\
\begin{array}{*{20}{c}}
{}&{}&{}&{}
\end{array} = \sum\limits_{m = 1}^n {{\gamma _m}} c_m^*
\end{array}\]
最後檢驗 term 4:
\[\begin{array}{l}
\int_a^b {{{\left| {{t_n}(x)} \right|}^2}} dx = \int_a^b {{t_n}(x)t_n^*(x)} dx\\
\begin{array}{*{20}{c}}
{}&{}&{}&{}
\end{array} = {\int_a^b {\sum\limits_{m = 1}^n {{\gamma _m}} {\phi _m}(x)\left[ {\sum\limits_{k = 1}^n {{\gamma _k}} {\phi _k}(x)} \right]} ^*}dx\\
\begin{array}{*{20}{c}}
{}&{}&{}&{}
\end{array} = \int_a^b {\sum\limits_{m = 1}^n {{\gamma _m}} {\phi _m}(x)\sum\limits_{k = 1}^n {{\gamma _k}^*} {\phi _k}^*(x)} dx\\
\begin{array}{*{20}{c}}
{}&{}&{}&{}
\end{array} = \sum\limits_{m = 1}^n {{\gamma _m}} \sum\limits_{k = 1}^n {{\gamma _k}^*} \underbrace {\int_a^b {{\phi _m}(x){\phi _k}^*(x)} dx}_{ = 1\begin{array}{*{20}{c}}
{}
\end{array}if\begin{array}{*{20}{c}}
{}
\end{array}m = k}\\
\begin{array}{*{20}{c}}
{}&{}&{}&{}
\end{array} = \sum\limits_{m= 1}^n {{\gamma _m}{\gamma _m}^*}  = \sum\limits_{m = 1}^n {{{\left| {{\gamma _m}} \right|}^2}}
\end{array}\]
故現在將上述結果 帶回 $(*)$ 可得
\[\begin{array}{l}
\int_a^b | f(x) - {t_n}(x){|^2}dx = \underbrace {\int_a^b {{{\left| {f(x)} \right|}^2}} dx}_{term1} - \underbrace {\int_a^b {f(x){t_n}^*(x)} dx}_{term2} - \underbrace {\int_a^b {{t_n}(x){f^*}(x)} dx}_{term3} + \underbrace {\int_a^b {{{\left| {{t_n}(x)} \right|}^2}} dx}_{term4}\\
\begin{array}{*{20}{c}}
{}&{}&{}&{}
\end{array} = \int_a^b {{{\left| {f(x)} \right|}^2}} dx - \sum\limits_{m = 1}^n {\gamma _m^*c_m^{}}  - \sum\limits_{m = 1}^n {{\gamma _m}c_m^*}  + \sum\limits_{m = 1}^n {{{\left| {{\gamma _m}} \right|}^2}}  \ \ \ \ (\star)
\end{array}\]
注意到下列 FACT:
\[\begin{array}{l}
\sum\limits_{m = 1}^n {{{\left| {{c_n} - {\gamma _m}} \right|}^2}}  = \sum\limits_{m = 1}^n {\left( {{c_n} - {\gamma _m}} \right){{\left( {{c_n} - {\gamma _m}} \right)}^*}}  = \sum\limits_{m = 1}^n {\left( {{c_n}{c_n}^* - {c_n}{\gamma _m}^* - {\gamma _m}{c_n}^* + {\gamma _m}{\gamma _m}^*} \right)} \\
 \Rightarrow \sum\limits_{m = 1}^n {{{\left| {{c_n} - {\gamma _m}} \right|}^2}}  = \sum\limits_{m = 1}^n {{c_n}{c_n}^*}  - \sum\limits_{m = 1}^n {{c_n}{\gamma _m}^*}  - \sum\limits_{m = 1}^n {{\gamma _m}{c_n}^*}  + \sum\limits_{m = 1}^n {{\gamma _m}{\gamma _m}^*} \\
 \Rightarrow \sum\limits_{m = 1}^n {{{\left| {{c_n} - {\gamma _m}} \right|}^2}}  - \sum\limits_{m = 1}^n {{{\left| {{c_n}} \right|}^2}}  =  - \sum\limits_{m = 1}^n {{c_n}{\gamma _m}^*}  - \sum\limits_{m = 1}^n {{\gamma _m}{c_n}^*}  + \sum\limits_{m = 1}^n {{{\left| {{\gamma _m}} \right|}^2}}
\end{array}\]與
\[\begin{array}{l}
\int_a^b | f(x) - {s_n}(x){|^2}dx = \int_a^b {\left( {f(x) - {s_n}(x)} \right){{\left( {f(x) - {s_n}(x)} \right)}^*}} dx\\
\begin{array}{*{20}{c}}
{}&{}&{}&{}
\end{array} = \int_a^b {\left( {f(x){f^*}(x) - f(x){s_n}^*(x) - {s_n}(x){f^*}(x) + {s_n}(x){s_n}^*(x)} \right)} dx\\
\begin{array}{*{20}{c}}
{}&{}&{}&{}
\end{array} = \int_a^b {f(x){f^*}(x)} dx - \int_a^b {f(x){s_n}^*(x)} dx - \int_a^b {{s_n}(x){f^*}(x)} dx + \int_a^b {{s_n}(x){s_n}^*(x)} dx\\
\begin{array}{*{20}{c}}
{}&{}&{}&{}
\end{array} = \int_a^b {{{\left| {f(x)} \right|}^2}} dx - \int_a^b {\left( {f(x)\sum\limits_{m = 1}^n {{c_m}^*{\phi _m}^*\left( x \right)} } \right)} dx - \int_a^b {\left( {\sum\limits_{m = 1}^n {{c_m}{\phi _m}\left( x \right)} {f^*}(x)} \right)} dx + \int_a^b {\left( {\sum\limits_{m = 1}^n {{c_m}{\phi _m}\left( x \right)} \sum\limits_{k = 1}^n {{c_k}^*{\phi _k}^*\left( x \right)} } \right)} dx\\
{\rm{since}}\begin{array}{*{20}{c}}
{}
\end{array}{s_n}(x): = \sum\limits_{m = 1}^n {{c_m}{\phi _m}\left( x \right)}  \Rightarrow s_n^*(x): = {\left[ {\sum\limits_{m = 1}^n {{c_m}{\phi _m}\left( x \right)} } \right]^*} = \sum\limits_{m = 1}^n {{c_m}^*{\phi _m}^*\left( x \right)} \\
\begin{array}{*{20}{c}}
{}&{}&{}&{}
\end{array} = \int_a^b {{{\left| {f(x)} \right|}^2}} dx - \sum\limits_{m = 1}^n {{c_m}^*} \int_a^b {\left( {f(x){\phi _m}^*\left( x \right)} \right)} dx - \sum\limits_{m = 1}^n {{c_m}} \int_a^b {{f^*}(x){\phi _m}\left( x \right)} dx + \sum\limits_{m = 1}^n {{c_m}} \sum\limits_{k = 1}^n {{c_k}^*} \int_a^b {{\phi _m}\left( x \right){\phi _k}^*\left( x \right)} dx\\
\begin{array}{*{20}{c}}
{}&{}&{}&{}
\end{array} = \int_a^b {{{\left| {f(x)} \right|}^2}} dx - \sum\limits_{m = 1}^n {{c_m}^*} {c_m} - \sum\limits_{m = 1}^n {{c_m}} c_m^* + \sum\limits_{m = 1}^n {{c_m}{c_m}^*} \\
\begin{array}{*{20}{c}}
{}&{}&{}&{}
\end{array} = \int_a^b {{{\left| {f(x)} \right|}^2}} dx - \sum\limits_{m = 1}^n {{c_m}^*} {c_m}\\
 \Rightarrow \int_a^b | f(x) - {s_n}(x){|^2}dx = \int_a^b {{{\left| {f(x)} \right|}^2}} dx - \sum\limits_{m = 1}^n {{{\left| {{c_m}} \right|}^2}}
\end{array}\]

故 $\star$ 可進一步改寫
\[\begin{array}{l}
\int_a^b | f(x) - {t_n}(x){|^2}dx = \int_a^b {{{\left| {f(x)} \right|}^2}} dx - \sum\limits_{m = 1}^n {\gamma _m^*c_m^{}}  - \sum\limits_{m = 1}^n {{\gamma _m}c_m^*}  + \sum\limits_{m = 1}^n {{{\left| {{\gamma _m}} \right|}^2}} \\
\begin{array}{*{20}{c}}
{}&{}&{}&{}
\end{array} = \int_a^b {{{\left| {f(x)} \right|}^2}} dx + \sum\limits_{m = 1}^n {{{\left| {{c_n} - {\gamma _m}} \right|}^2}}  - \sum\limits_{m = 1}^n {{{\left| {{c_n}} \right|}^2}} \\
\begin{array}{*{20}{c}}
{}&{}&{}&{}
\end{array} = \underbrace {\int_a^b {{{\left| {f(x)} \right|}^2}} dx - \sum\limits_{m = 1}^n {{{\left| {{c_n}} \right|}^2}} }_{ = \int_a^b | f(x) - {s_n}(x){|^2}dx} + \sum\limits_{m = 1}^n {{{\left| {{c_n} - {\gamma _m}} \right|}^2}} \\
\begin{array}{*{20}{c}}
{}&{}&{}&{}
\end{array} = \int_a^b | f(x) - {s_n}(x){|^2}dx + \underbrace {\sum\limits_{m = 1}^n {{{\left| {{c_n} - {\gamma _m}} \right|}^2}} }_{ \ge 0}\\
 \Rightarrow \int_a^b | f(x) - {t_n}(x){|^2}dx \ge \int_a^b | f(x) - {s_n}(x){|^2}dx\\

\end{array}\]
且若 $c_m = \gamma_m$ 則等式成立。 $\square$

留言

這個網誌中的熱門文章

[數學分析] 什麼是若且唯若 "if and only if"

數學上的 if and only if  ( 此文不討論邏輯學中的 if and only if,只討論數學上的 if and only if。) 中文翻譯叫做  若且唯若 (or 當且僅當) , 記得當初剛接觸這個詞彙的時候,我是完全不明白到底是甚麼意思,查了翻譯也是愛莫能助,畢竟有翻跟沒翻一樣,都是有看沒有懂。 在數學上如果看到 if and only if  這類的句子,其實是表示一種 雙條件句 ,通常可以直接將其視為" 定義(Definition)" 待之,今天要分享的是這樣的一個句子如何用比較直觀的方法去看他 假設我們現在有 兩個邏輯陳述句 A 與  B. 注意到,在此我們不必考慮這兩個陳述句到底是什麼,想表達什麼,或者到底是否為真(true),這些都不重要。只要知道是兩個陳述即可。 現在,考慮新的陳述:  "A if and only if B" 好了,現在主角登場,我們可以怎麼看待這個句子呢? 事實上我們可以很直覺的把這句子拆成兩部分看待,也就是 "( A if B ) and ( A only if B )" 那麼先針對第一個部分  A if B  來看, 其實這句就是說  if B then A, 更直白一點就是 "if B is true, then A is also true".  在數學上等價可以寫為 "B implies A" .  或者更常用一個箭頭符號來表示 "B $\Rightarrow$  A"  現在針對第二個部分  A only if B 此句意指  "If B is not true, then A is also not true". 所以如果已知 A is true,  那麼按照上句不難推得 B is also true 也就是說  A only if B  等價為 "If A is true then B is also true". 同樣,也可以寫作   "A implies B"   或者用箭頭表示  "A   $\Rightarrow$     B".

[數學分析] 淺談各種基本範數 (Norm)

這次要介紹的是數學上一個重要的概念: Norm: 一般翻譯成 範數 (在英語中 norm 有規範的意思,比如我們說normalization就是把某種東西/物品/事件 做 正規化,也就是加上規範使其正常化),不過個人認為其實翻譯成 範數 也是看不懂的...這邊建議把 Norm 想成長度就好 (事實上norm是長度的抽象推廣), 也許讀者會認為好端端的長度不用,為何又要發明一個 norm 來自討苦吃?? 既抽象又艱澀。 事實上想法是這樣的: 比如說現在想要比較兩個數字 $3$ , $5$ 之間的大小,則我們可以馬上知道 $ 3 < 5 $;同樣的,如果再考慮小數與無理數如 $1.8753$ 與 $\pi$,我們仍然可以比較大小 $1.8753 < \pi = 3.1415...$ 故可以發現我們有辦法對 "純量" 做明確的比大小,WHY? 因為前述例子中 $3$, $5$, $1.8753$ or $\pi$ 其各自的大小有辦法被 "measure "! 但是如果是現在考慮的是一組數字 我們如何去measure 其大小呢?? 比如說 \[x:=[1, -2, 0.1, 0 ]^T \]上式的大小該是多少? 是 $1$? $-2$? $0.1$??? 再者如果更過分一點,我們考慮一個矩陣 \[A = \left[ {\begin{array}{*{20}{c}} 1&2\\ 3&4 \end{array}} \right] \],想要知道這個矩陣的大小又該怎麼辦?? 是 $1$ ? $2$ 還是 $4$ ?..其實現階段我們說不清楚。 也正是如此,可以發現我們確實需要新的 "長度" 的定義來幫助我們如何去 measure 矩陣/向量/甚至是函數的大小。 故此,我們首先定義甚麼是Norm,(也就是把 "長度" or "大小" 的本質抽離出來) ================== Definition: Norm 考慮 $V$ 為一個向量空間(Vector space),則我們說  Norm 為一個函數 $||\cdot|| : V \rightarrow \mathbb{R}$ 且滿足下列性質