12/14/2015

[線性代數] $A^2 = I \implies A=I?$

考慮以下問題 令 $A$ 為 任意 $n \times n$ 矩陣,試問下列陳述是否正確
Claim: $ A^2 = I  $則 $A = I$?

讀者可能注意到 $A^2 = AA = I$ 表示我們有
\[
A= A^{-1}
\]故上述陳述看來頗為誘人讓人想回答 True 但事實上此陳述為錯誤陳述,因為若我們考慮
\[A = \left[ {\begin{array}{*{20}{c}}
0&1\\
1&0
\end{array}} \right]\]則
\[
A^2 = I_{2 \times 2}
\]但 $A \neq I_{2 \times 2}$


沒有留言:

張貼留言

[Claude] 國小數學加減乘除法計算小遊戲:數學寶可夢

心血來潮用 Anthropic Claude 做的簡單國小數學乘除法計算小遊戲,感嘆AI工具之強大與便利。原本可能要耗時幾天的工作轉眼就完成,時代的巨輪確實在飛速轉動。  數學寶可夢(Math Monster Battle)對戰的國小數學 加減乘除 小遊戲連結如下: https:...