跳到主要內容

[凸分析] 擬凸函數 取積分後不保證其 擬凸性

回憶在 凸分析 中,兩凸函數 $f_1, f_2$ 之合仍為 convex,且此特性可進一步推廣至有限函數和,無窮組函數和,甚至積分都對,此篇文章中,我們將針對 擬凸函數(quasiconvex function) 來檢驗上述性質。令 $X$ 為隨機變數,現令 函數 $f(X,K)$ 為 quasiconvex in $K$ almost surely,則我們想問對其取積分之後是否仍為 quasiconvex in $K$?,亦即 $E[ f(X, K) ]$ 是否仍為 quasiconvex in $K$?

再構造反例之前,我們先給出 quasiconvex 函數的定義:

=================
Definition: 我們稱 $f: dom(f) \subset \mathbb{R}^n \to \mathbb{R}$ 為 擬凸函數 (quasiconvex function) 若下列條件成立:
對任意 $ \alpha \in \mathbb{R}$,集合
\[
S_{\alpha} := \{x \in dom(f) : f(x) \leq \alpha \}
\] 為 convex 集。
=================


Comments:
1. Quasiconvex 在有些文獻中又稱為 unimodal。
2. 所謂的擬凸性質 (Quasiconvexity) 可視為是 凸性 (Convexity) 的推廣,關於 quasiconvex 函數更詳細的介紹,建議讀者參考 [1],在此我們不做贅述。


現在我們可以著手回答一開始本篇文章所關心的問題:若 $f(X,K)$ 為 quasiconvex in $K$,是否取期望值 (積分)之後 $E[f(X,K)]$ 亦為 quasiconvex in $K$? 此答案是否定的,以下我們構造反例:

Counter Example: 令 $K \in [0,1]$ 且 $X$ 為隨機變數滿足 $X = 0 $ with probability $1/2$ 且 $X=1$ with probability $1/2$,取 $$
f(X,K) := (1 - X) K  - X K^2
$$ 則可知此函數 $f$ 為 quasiconvex in $K$ almost surely (WHY?),在此我們繪製所有可能的 $X$ 及其對應的函數圖形如下


可看出給定 $\alpha \in \mathbb{R}$,不論在 $X=0$ 或者 $X=1$ 均可得知對應的集合 $S_\alpha$ 為 convex,故可推知 $f(X,K)$ 為 quasiconvex with probability one。

然後,現在我們檢驗其期望值
\[\begin{align*}
  E[f(X,K)] = \frac{{ - {K^2}}}{2} + \frac{K}{2}
\end{align*} \]不再是 quasiconvex。讀者可自行繪製上述函數對應的集合 $S_\alpha$ 即可立刻發現不為 convex; 舉例而言,取 $\alpha := 0.05$,且繪製 $E[f(X,K)]$ 如下圖


可發現 $S_{\alpha=0.05} =\{K \in [0,1]: E[f(X,K)] \leq 0.05 \}$ 的集合大約可表為
 $$
\{K: K \in [0,0.15] \bigcup [0.85,1]\}
$$故可立刻判斷 $S_{\alpha = 0.05}$ 不是 convex 集,由此可知 $E[f(X,K)]$ 非 quasiconvex 。


[1] S. P. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004.

留言

這個網誌中的熱門文章

[數學分析] 什麼是若且唯若 "if and only if"

數學上的 if and only if  ( 此文不討論邏輯學中的 if and only if,只討論數學上的 if and only if。) 中文翻譯叫做  若且唯若 (or 當且僅當) , 記得當初剛接觸這個詞彙的時候,我是完全不明白到底是甚麼意思,查了翻譯也是愛莫能助,畢竟有翻跟沒翻一樣,都是有看沒有懂。 在數學上如果看到 if and only if  這類的句子,其實是表示一種 雙條件句 ,通常可以直接將其視為" 定義(Definition)" 待之,今天要分享的是這樣的一個句子如何用比較直觀的方法去看他 假設我們現在有 兩個邏輯陳述句 A 與  B. 注意到,在此我們不必考慮這兩個陳述句到底是什麼,想表達什麼,或者到底是否為真(true),這些都不重要。只要知道是兩個陳述即可。 現在,考慮新的陳述:  "A if and only if B" 好了,現在主角登場,我們可以怎麼看待這個句子呢? 事實上我們可以很直覺的把這句子拆成兩部分看待,也就是 "( A if B ) and ( A only if B )" 那麼先針對第一個部分  A if B  來看, 其實這句就是說  if B then A, 更直白一點就是 "if B is true, then A is also true".  在數學上等價可以寫為 "B implies A" .  或者更常用一個箭頭符號來表示 "B $\Rightarrow$  A"  現在針對第二個部分  A only if B 此句意指  "If B is not true, then A is also not true". 所以如果已知 A is true,  那麼按照上句不難推得 B is also true 也就是說  A only if B  等價為 "If A is true then B is also true". 同樣,也可以寫作   "A implies B"   或者用箭頭表示  "A   $\Rightarrow$     B".

[數學分析] 淺談各種基本範數 (Norm)

這次要介紹的是數學上一個重要的概念: Norm: 一般翻譯成 範數 (在英語中 norm 有規範的意思,比如我們說normalization就是把某種東西/物品/事件 做 正規化,也就是加上規範使其正常化),不過個人認為其實翻譯成 範數 也是看不懂的...這邊建議把 Norm 想成長度就好 (事實上norm是長度的抽象推廣), 也許讀者會認為好端端的長度不用,為何又要發明一個 norm 來自討苦吃?? 既抽象又艱澀。 事實上想法是這樣的: 比如說現在想要比較兩個數字 $3$ , $5$ 之間的大小,則我們可以馬上知道 $ 3 < 5 $;同樣的,如果再考慮小數與無理數如 $1.8753$ 與 $\pi$,我們仍然可以比較大小 $1.8753 < \pi = 3.1415...$ 故可以發現我們有辦法對 "純量" 做明確的比大小,WHY? 因為前述例子中 $3$, $5$, $1.8753$ or $\pi$ 其各自的大小有辦法被 "measure "! 但是如果是現在考慮的是一組數字 我們如何去measure 其大小呢?? 比如說 \[x:=[1, -2, 0.1, 0 ]^T \]上式的大小該是多少? 是 $1$? $-2$? $0.1$??? 再者如果更過分一點,我們考慮一個矩陣 \[A = \left[ {\begin{array}{*{20}{c}} 1&2\\ 3&4 \end{array}} \right] \],想要知道這個矩陣的大小又該怎麼辦?? 是 $1$ ? $2$ 還是 $4$ ?..其實現階段我們說不清楚。 也正是如此,可以發現我們確實需要新的 "長度" 的定義來幫助我們如何去 measure 矩陣/向量/甚至是函數的大小。 故此,我們首先定義甚麼是Norm,(也就是把 "長度" or "大小" 的本質抽離出來) ================== Definition: Norm 考慮 $V$ 為一個向量空間(Vector space),則我們說  Norm 為一個函數 $||\cdot|| : V \rightarrow \mathbb{R}$ 且滿足下列性質