跳到主要內容

[投資理論] 內部收益率 與 其存在性

首先給出內部收益率 (又稱 內部報酬率) 的定義:

==============================
Definition: Internal Rate of Return (IRR)
給定 現金流 $(x_0,x_1,...,x_n)$ ,則我們稱其對應的 內部收益率(Internal Rate of Return, IRR) 為一實數 $r > -1 $ 滿足
\[0 = {x_0} + \frac{{{x_1}}}{{1 + r}} + \frac{{{x_2}}}{{{{\left( {1 + r} \right)}^2}}} +  \cdots  + \frac{{{x_n}}}{{{{\left( {1 + r} \right)}^n}}}
\]==============================

以下我們看個關於 IRR的例子:假設初始現金流 $x_0$ 支出 1 元做某項投資,並且陸續將三年的報酬記錄如下:
  • 該投資第一年所獲得的現金流報酬 $x_1$ 為 $1$元,
  • 該投資第二年所獲得的現金流報酬 $x_2$ 為 $1$元,
  • 該投資第三年所獲得的現金流報酬 $x_3$為 $0$元,
則我們可以將上述投資的現金流簡記為 $(x_0,x_1,x_2,x_3) = (-1,1,1,0)$ 下面例子可以讓讀者練習計算 IRR

==============================
Example: 給定現金流 $(x_0,x_1,x_2,x_3) = (-1,1,1,0)$ 試求 內部收益率 $r=?$
==============================
ANS:
由 IRR 定義
\begin{align*}
 & 0 = {x_0} + \frac{{{x_1}}}{{1 + r}} + \frac{{{x_2}}}{{{{\left( {1 + r} \right)}^2}}} + \frac{{{x_n}}}{{{{\left( {1 + r} \right)}^3}}} \hfill \\
 &  \Rightarrow 0 =  - 1 + \frac{1}{{1 + r}} + \frac{1}{{{{\left( {1 + r} \right)}^2}}} + \frac{0}{{{{\left( {1 + r} \right)}^3}}} \hfill \\
  & \Rightarrow {\left( {1 + r} \right)^2} = r + 2 \hfill \\
  & \Rightarrow {r^2} + r - 1 = 0 \hfill \\
\end{align*}故可解得兩根 $r_1 \approx 0.61803$ 或者 $r_2 \approx -1.6180$,但由定義可知我們要求 內部收益率必須滿足 $r>-1$ 故
\[
r = r_1 \approx 0.618\;\;\;\;\; \square
\]


Comments:
1. 內部收益率本質為利率
2. 內部收益率之所以被稱為 "內部" 主因是因為 此 收益率 (利率) 僅僅由現金流所推定。
3.對於上述多項式方程,令
\[
c:=\frac{1}{1+r}
\]則我們可得到更為簡潔的多項式如下
\[
x_0+x_1 c + x_2 c^2 +\cdots +x_n c^n
\]
由於 IRR 要求求解 $n$ 階多項式,我們必須先解決 解的存在性問題:下面的定理將告訴我們何時解存在。

==============================
Main Theorem of Internal Rate of Return: 
令現金流 $(x_0, x_1,...,x_n)$ 滿足 $x_0 <0$ 且對於 $k=1,2,...,n$而言, $x_k \geq 0 $ 且至少有一項 $x_j >0$ ,則對於下列方程
\[
0 = x_0+x_1 c + x_2 c^2 +\cdots +x_n c^n
\]存在唯一正實數解 $c_0$
==============================

Proof:
$$
f(c) :=x_0+x_1 c+x_2 c^2 +\cdots +x_n c^n
$$ 為一 以 $c$ 為變數的 $n$ 次多項式函數,我們要證明 $f$ 有唯一正實數解。

我們首先證明解的存在性:由於 $f$ 為多項式函數,故立即知道 $f$ 為對 參數 $c$ 連續。另外我們觀察
\[
f(0) = x_0 <0
\] 且由於至少現金流中至少有一項 $x_j >0$,故若對 $f$ 取導數可得
$$
f'(c) = x_1 + 2x_2 c + \cdots + j x_j c^{j-1} +\cdots+nx_n c^{n-1} > 0
$$亦即我們知道 $f(c)$ 為對 $c$ 嚴格遞增,現在利用 連續函數中間值定理(Intermediate Value Theorem) 可知,必存在一解 $c_0$ 使得 $f(c_0) =0$ 。

接著我們證明 $c_0$ 解 為唯一:
利用 $f$ 的遞增性質,可推知此 $c_0$ 為唯一 (因為遞增故不存在 $c_2$ 使得 再次又交會於零,亦即 不存在另外一點 使得 $f(c_2) =0$)。

最後我們證明 $c_0 >0$
回憶因為 $f(0) <0$ 且 $f$ 遞增,故所求之解 $c_0$ 必為正數。 $\square$


Comment:
1. 有時候在求解上述 $n$ 次多項式的時候 可能我們會解出 複數根 (complex roots) 的情況,此時一般而言我們通常選具有最大實部的複數根作為我們的解。

2. 內部收益率是非常有用的工具,撇除上述的理論部分,其計算上其實非常容易,市面上的軟體諸如 Microsoft Excel 或者免費的 Google Sheets 都可以幫助我們快速計算 IRR,以下我們使用前述的 IRR 來給出一個 計算退休的投資計畫的例子:

Example: 
考慮某投資人剛找到工作,手邊身無分文,但他預計 30 年後要退休,且這名投資人樂觀的預計這三十年中,他可以省吃儉用每年投資固定 10萬元來儲備其退休金,並且我們假設他 $30$ 年所需要的退休金 為 3000 萬元,則我們有
\[
$(x_1,x_2,x_3, ...., x_{30}, U ) = (-10,-10,-10,...,-10, 3000)$
\] 我們想問如果投資人想建構某投資計畫,則該投資計畫之每年的報酬率要達到多少才可能達成上述的退休計畫呢?

NOTE: 注意到此例並不滿足 IRR 存在且唯一 定理的充分條件。(因為 $x_2...,x_{30} <0$)

但我們仍然能用數值逼近的方式計算 IRR ,以下我們用 Google Sheets 來實現上述的範例,首先建構下表



接著我們利用 函數 $irr(B2:B32)$ (公式我輸入在上表中的 $C32$位置) 即可立刻計算每年所需的投資報酬率,在此例中為 $12.5133\%$。也就是說如果我們採用每年投資 10萬元,三十年後要達到 3000萬退休金的每年投資報酬率必須要有 $12.5133\%$,

留言

這個網誌中的熱門文章

[數學分析] 什麼是若且唯若 "if and only if"

數學上的 if and only if  ( 此文不討論邏輯學中的 if and only if,只討論數學上的 if and only if。) 中文翻譯叫做  若且唯若 (or 當且僅當) , 記得當初剛接觸這個詞彙的時候,我是完全不明白到底是甚麼意思,查了翻譯也是愛莫能助,畢竟有翻跟沒翻一樣,都是有看沒有懂。 在數學上如果看到 if and only if  這類的句子,其實是表示一種 雙條件句 ,通常可以直接將其視為" 定義(Definition)" 待之,今天要分享的是這樣的一個句子如何用比較直觀的方法去看他 假設我們現在有 兩個邏輯陳述句 A 與  B. 注意到,在此我們不必考慮這兩個陳述句到底是什麼,想表達什麼,或者到底是否為真(true),這些都不重要。只要知道是兩個陳述即可。 現在,考慮新的陳述:  "A if and only if B" 好了,現在主角登場,我們可以怎麼看待這個句子呢? 事實上我們可以很直覺的把這句子拆成兩部分看待,也就是 "( A if B ) and ( A only if B )" 那麼先針對第一個部分  A if B  來看, 其實這句就是說  if B then A, 更直白一點就是 "if B is true, then A is also true".  在數學上等價可以寫為 "B implies A" .  或者更常用一個箭頭符號來表示 "B $\Rightarrow$  A"  現在針對第二個部分  A only if B 此句意指  "If B is not true, then A is also not true". 所以如果已知 A is true,  那麼按照上句不難推得 B is also true 也就是說  A only if B  等價為 "If A is true then B is also true". 同樣,也可以寫作   "A implies B"   或者用箭頭表示  "A   $\Rightarrow$     B".

[數學分析] 淺談各種基本範數 (Norm)

這次要介紹的是數學上一個重要的概念: Norm: 一般翻譯成 範數 (在英語中 norm 有規範的意思,比如我們說normalization就是把某種東西/物品/事件 做 正規化,也就是加上規範使其正常化),不過個人認為其實翻譯成 範數 也是看不懂的...這邊建議把 Norm 想成長度就好 (事實上norm是長度的抽象推廣), 也許讀者會認為好端端的長度不用,為何又要發明一個 norm 來自討苦吃?? 既抽象又艱澀。 事實上想法是這樣的: 比如說現在想要比較兩個數字 $3$ , $5$ 之間的大小,則我們可以馬上知道 $ 3 < 5 $;同樣的,如果再考慮小數與無理數如 $1.8753$ 與 $\pi$,我們仍然可以比較大小 $1.8753 < \pi = 3.1415...$ 故可以發現我們有辦法對 "純量" 做明確的比大小,WHY? 因為前述例子中 $3$, $5$, $1.8753$ or $\pi$ 其各自的大小有辦法被 "measure "! 但是如果是現在考慮的是一組數字 我們如何去measure 其大小呢?? 比如說 \[x:=[1, -2, 0.1, 0 ]^T \]上式的大小該是多少? 是 $1$? $-2$? $0.1$??? 再者如果更過分一點,我們考慮一個矩陣 \[A = \left[ {\begin{array}{*{20}{c}} 1&2\\ 3&4 \end{array}} \right] \],想要知道這個矩陣的大小又該怎麼辦?? 是 $1$ ? $2$ 還是 $4$ ?..其實現階段我們說不清楚。 也正是如此,可以發現我們確實需要新的 "長度" 的定義來幫助我們如何去 measure 矩陣/向量/甚至是函數的大小。 故此,我們首先定義甚麼是Norm,(也就是把 "長度" or "大小" 的本質抽離出來) ================== Definition: Norm 考慮 $V$ 為一個向量空間(Vector space),則我們說  Norm 為一個函數 $||\cdot|| : V \rightarrow \mathbb{R}$ 且滿足下列性質