跳到主要內容

[機率論] Chebyshev's Inequality 的推廣型

以下介紹一個在機率論中 相當有用的 一條不等式,稱為 Chebyshev inequality,此不等式將 期望值 與 機率測度 做出一定程度的連結 來用以估計 期望值的下界 (或者說 求某機率測度的上界)。以下我們給出此不等式之陳述與證明:讀者可注意要求的假設條件並不多,證明也稍具巧思。

================
Theorem: Generalized Chebyshev's Inequality 
令 $X$ 為 任意 連續型 隨機變數 配備 機率密度函數 $f_X$ ,現在定義 $g(X)$ 為任意非負函數,若 $E[g(X)]$ 存在,則 對任意常數 $c>0$,我們有
\[
P(g(X) \geq c) \leq \frac{E[g(X)]}{c}
\]================


Proof: 假設 $X$ 為連續型隨機變數且 $E[g(X)]$ 存在,令 $c >0$ 為任意正值常數。由於期望值 $E[g(X)]$ 存在,由定義可知我們有
\[
E\left[ {g\left( X \right)} \right] = \int_{ - \infty }^\infty  {g\left( x \right){f_X}\left( x \right)dx}
\]其中 $f_X(x)$ 為 $X$ 的 機率密度函數 (Probability Density Function, pdf)。現在觀察上述右式積分,我們可將其等價寫為
\begin{align*}
  \int_{ - \infty }^\infty  {g\left( x \right){f_X}\left( x \right)dx}  &= \int_{\left\{ {x:g\left( x \right) \geqslant c} \right\}}^{} {g\left( x \right){f_X}\left( x \right)dx}  + \int_{\left\{ {x:g\left( x \right) < c} \right\}}^{} {g\left( x \right){f_X}\left( x \right)dx}  \hfill \\
 &  \geq \int_{\left\{ {x:g\left( x \right) \geqslant c} \right\}}^{} {g\left( x \right){f_X}\left( x \right)dx}  \;\;\;\; (*)
\end{align*} 注意到上述不等式成立 是 因為對所有 $x$ 而言, $g(x) \geq 0$ 且 pdf $f_X(x) \geq 0$。現在我們觀察不等式右方的積分式子 $ \int_{\left\{ {x:g\left( x \right) \geqslant c} \right\}}^{} {g\left( x \right){f_X}\left( x \right)dx} $ 可以發現此積分範圍是對所有的 $x$ 滿足 $g(x) \geq c$,這表示我們可以進一步寫出此積分的下界
\[\int_{\left\{ {x:g\left( x \right) \geqslant c} \right\}}^{} {g\left( x \right){f_X}\left( x \right)dx}  \geqslant \int_{\left\{ {x:g\left( x \right) \geqslant c} \right\}}^{} {c{f_X}\left( x \right)dx} \;\;\;\;\; (**)
\]由 $(*)$ 與 $(**)$ 我們可知
\begin{align*}
  E\left[ {g\left( X \right)} \right] &\geq \int_{\left\{ {x:g\left( x \right) \geqslant c} \right\}}^{} {c{f_X}\left( x \right)dx}  \hfill \\
   &= c\int_{\left\{ {x:g\left( x \right) \geqslant c} \right\}}^{} {{f_X}\left( x \right)dx}  \hfill \\
   &= cP\left( {g\left( x \right) \geqslant c} \right) \hfill \\
\end{align*} 故
\[\frac{{E\left[ {g\left( X \right)} \right]}}{c} \geqslant P\left( {g\left( x \right) \geqslant c} \right)\]至此得證。$\square$

Comments:
1. 上述定理對 離散型隨機變數仍然成立,僅須將證明的積分部分 $\int (\cdot)$ 改成累加 $\sum (\cdot)$ 即可。
2. Chebyshev's inequality 的界的 "鬆緊程度" 依隨機變數情況而定,故拿來做精準上下界估計不一定準確。
3. 若 $g(X):=X$ 則上述 廣義 Chebyshev's inequality 又稱作 Markov's inequality。
4. 上述廣義的 Chebyshev's inequality 應用在於如何"識別"或者 "選取" 適當的 非負函數 $g(X)$,我們會在以下再作進一步說明。



以下我們看個上述定理的應用例:

==================
FACT 1: Standard Chebyshev's inequality 
令 $X$ 為隨機變數具有 有限期望值 與變異數,記作 $ E[X] := \mu$ 且 $E[(X- \mu)^2] =\sigma^2$ 。則對任意 $n>0$ 而言,我們有
\[
P( (X-\mu)^2 \geq n^2 \sigma^2) \leq \frac{1}{n^2}
\]==================

Proof:
給定 $n >0$, 定義 $g(X) := (X-\mu)^2 \geq 0$,則 Generalized Chebyshev's inequality 告訴我們對任意 $c>0$,我們有
\[P({\left( {X - \mu } \right)^2} \geqslant c) \leqslant \frac{{E\left[ {{{\left( {X - \mu } \right)}^2}} \right]}}{c}\]又因為 ${E\left[ {{{\left( {X - \mu } \right)}^2}} \right] = {\sigma ^2}}$ 故上式可改寫為
\[
P({\left( {X - \mu } \right)^2} \geqslant c) \leqslant \frac{{{\sigma ^2}}}{c}
\]現在取 $c:=\sigma^2 n^2 >0$ 則\[
P({\left( {X - \mu } \right)^2} \geqslant n^2 \sigma^2 ) \leqslant \frac{1}{n^2}
\]至此得證。$\square$

==================
FACT 2:
令 $X$ 為隨機變數配備 期望值 $\mu$ 且令 $E[(X-\mu)^{2k}]$ 對任意正整數 $k$ 都存在,則對任意 $c >0$,
\[
P(|X-\mu| \geq c) \leq E[(X-\mu)^{2k}]/c^{2k}
\]==================

Proof: omitted. (取 $g(X):= (X-\mu)^{2k}$ 且 $c = d^{1/2k}, \;\; \forall d>0$ )


以下結果為利用 Chebyshev inequality 與 動差生成函數 Moment Generating Function (mgf) 拉上關係:


==================
FACT 3:
令 $X$ 為隨機變數配備 mgf 滿足下列條件:存在 $\delta>0$ 使得當 $t \in (-\delta, \delta)$,其 mgf $M_X(t)$ 存在,則
\[
P(X \geq c) \leq e^{-ct} M_X(t), \;\;\; t \in (0, \delta)
\]且
\[
P(X \leq c) \leq e^{-ct} M_X(t), \;\;\; t \in (-\delta,0)
\]==================

Proof: omitted (取 $g(X):= e^{tX}$ 且 $c = \frac{\log d}{ t}, \;\; \forall d>0$  )


留言

這個網誌中的熱門文章

[數學分析] 什麼是若且唯若 "if and only if"

數學上的 if and only if  ( 此文不討論邏輯學中的 if and only if,只討論數學上的 if and only if。) 中文翻譯叫做  若且唯若 (or 當且僅當) , 記得當初剛接觸這個詞彙的時候,我是完全不明白到底是甚麼意思,查了翻譯也是愛莫能助,畢竟有翻跟沒翻一樣,都是有看沒有懂。 在數學上如果看到 if and only if  這類的句子,其實是表示一種 雙條件句 ,通常可以直接將其視為" 定義(Definition)" 待之,今天要分享的是這樣的一個句子如何用比較直觀的方法去看他 假設我們現在有 兩個邏輯陳述句 A 與  B. 注意到,在此我們不必考慮這兩個陳述句到底是什麼,想表達什麼,或者到底是否為真(true),這些都不重要。只要知道是兩個陳述即可。 現在,考慮新的陳述:  "A if and only if B" 好了,現在主角登場,我們可以怎麼看待這個句子呢? 事實上我們可以很直覺的把這句子拆成兩部分看待,也就是 "( A if B ) and ( A only if B )" 那麼先針對第一個部分  A if B  來看, 其實這句就是說  if B then A, 更直白一點就是 "if B is true, then A is also true".  在數學上等價可以寫為 "B implies A" .  或者更常用一個箭頭符號來表示 "B $\Rightarrow$  A"  現在針對第二個部分  A only if B 此句意指  "If B is not true, then A is also not true". 所以如果已知 A is true,  那麼按照上句不難推得 B is also true 也就是說  A only if B  等價為 "If A is true then B is also true". 同樣,也可以寫作   "A implies B"   或者用箭頭表示  "A   $\Rightarrow$     B".

[數學分析] 淺談各種基本範數 (Norm)

這次要介紹的是數學上一個重要的概念: Norm: 一般翻譯成 範數 (在英語中 norm 有規範的意思,比如我們說normalization就是把某種東西/物品/事件 做 正規化,也就是加上規範使其正常化),不過個人認為其實翻譯成 範數 也是看不懂的...這邊建議把 Norm 想成長度就好 (事實上norm是長度的抽象推廣), 也許讀者會認為好端端的長度不用,為何又要發明一個 norm 來自討苦吃?? 既抽象又艱澀。 事實上想法是這樣的: 比如說現在想要比較兩個數字 $3$ , $5$ 之間的大小,則我們可以馬上知道 $ 3 < 5 $;同樣的,如果再考慮小數與無理數如 $1.8753$ 與 $\pi$,我們仍然可以比較大小 $1.8753 < \pi = 3.1415...$ 故可以發現我們有辦法對 "純量" 做明確的比大小,WHY? 因為前述例子中 $3$, $5$, $1.8753$ or $\pi$ 其各自的大小有辦法被 "measure "! 但是如果是現在考慮的是一組數字 我們如何去measure 其大小呢?? 比如說 \[x:=[1, -2, 0.1, 0 ]^T \]上式的大小該是多少? 是 $1$? $-2$? $0.1$??? 再者如果更過分一點,我們考慮一個矩陣 \[A = \left[ {\begin{array}{*{20}{c}} 1&2\\ 3&4 \end{array}} \right] \],想要知道這個矩陣的大小又該怎麼辦?? 是 $1$ ? $2$ 還是 $4$ ?..其實現階段我們說不清楚。 也正是如此,可以發現我們確實需要新的 "長度" 的定義來幫助我們如何去 measure 矩陣/向量/甚至是函數的大小。 故此,我們首先定義甚麼是Norm,(也就是把 "長度" or "大小" 的本質抽離出來) ================== Definition: Norm 考慮 $V$ 為一個向量空間(Vector space),則我們說  Norm 為一個函數 $||\cdot|| : V \rightarrow \mathbb{R}$ 且滿足下列性質