跳到主要內容

[訊號與系統] Amplitude Modulation 淺嚐:Beat Signal

回憶一般 弦波訊號
\[
x(t) := A \cos(2 \pi f_c t + \phi)
\] 其中 $A$ 為振幅,$f_c$ 為 (載波) 頻率,$\phi$ 為相位。現在我們考慮將上述弦波做進一步簡單的推廣如下:假設 振幅 $A$ 不再是常數,而是隨時間變化的函數 比如 $A:=a(t)$ ,則我們得到\[
x(t) = a(t) \cos(2\pi f_c t +\phi)
\] 上述稱為 振幅調變 (Amplitude Modulation) 的一般形式,其中 $a(t)$ 為 依時間變化的函數 且一般而言,假設 $a(t)$ 的最高頻率 $f_a << f_c$。

Comments:
1. 震幅 $a(t)$ 隨時間變化,可看成 振幅 被 "調變"(modulation)
2. 一般實際應用上, $a(t)$ 為多半為實際帶有信息的訊號 (比如 聲音,歌聲,影像...) 且其最高頻率會遠遠低於 載子頻率 $f_c$ ,使得我們在做 AM 處理之後,$a(t)$ 訊號可被方便傳送。
3. 當然,對於 $z(t)$ 的推廣不僅僅限於頻率,我們也可以對其頻率推廣,比如說將固定 $f_c$ 改成 $f_c:=\psi(t)$ 使其成為與時間有關的函數,此法會得到所謂的 頻率調變(Frequency Modulation, FM) 我們會另外再開一篇文章描述之,在此不做贅述。

以下我們看個經典的AM例子:

AM Example: Beat Signal or Sinusoidal AM
以下我們看個特例:假設 $a(t) := A \cos(2 \pi f_a t)$ 則我們得到 AM 訊號如下
\[
x(t) = A \cos(2 \pi f_a t)  \cos(2\pi f_c t +\phi)
\]上述訊號可以透過 Inverse Euler formula 將其改寫為
\begin{align*}
  x(t) &= A\cos (2\pi {f_a}t)\cos (2\pi {f_c}t) \hfill \\
   &= A \left( \frac{{{e^{j2\pi {f_a}t}} + {e^{ - j2\pi {f_a}t}}}}{2} \right) \left( \frac{{{e^{j\left( {2\pi {f_c}t} \right)}} + {e^{ - j\left( {2\pi {f_c}t} \right)}}}}{2} \right) \hfill \\
   &= \frac{A}{4}\left( {{e^{j2\pi {f_a}t}} + {e^{ - j2\pi {f_a}t}}} \right)\left( {{e^{j\left( {2\pi {f_c}t} \right)}} + {e^{ - j\left( {2\pi {f_c}t} \right)}}} \right) \hfill \\
   &= \frac{A}{4}\left( {{e^{j2\pi \left( {{f_a} + {f_c}} \right)t}} + {e^{ - j2\pi \left( {{f_a} + {f_c}} \right)t}} + {e^{j2\pi \left( {{f_a} - {f_c}} \right)t}} + {e^{ - j2\pi \left( {{f_a} - {f_c}} \right)t}}} \right) \hfill \\
   &= \frac{A}{2}\cos \left( {2\pi \left( {{f_a} + {f_c}} \right)t} \right) + \frac{A}{2}\cos \left( {2\pi \left( {{f_a} - {f_c}} \right)t} \right) \hfill \\
\end{align*}
Comments:
1. 上述 $x(t)$ 可表為 兩弦波相加,一般又稱之為 beat signal,生活上的實際應用為比如說同時按下兩兩相鄰的鋼琴琴鍵。
2. 我們有兩種觀點看上述的 Beat Signal,首先是 $x(t)$ 可以視為是 震幅隨時間變化的弦波,故若使用 MATLAB 的 soundsc(.) 函數播放,則聲音聽起來會是漸強在接漸弱,第二種觀點則是上述 $x(t)$ 為兩個具有不同頻率 ($f_c+f_a$ 與 $f_c-f_a$)的 弦波相加,那麼聽起來便會是兩種弦波分別以不同頻率產生的聲音疊加而成。
3. 那麼該如何分辨何時只聽得到一組漸強漸弱得弦波 或者 聽到 不同頻率的弦波? 以下有一個一般性的判斷法則:令 $T$ 為 $x(t)$ 的最終持續時間,且定義 "頻寬" $B:= 2 f_a$ ,若
\[
T\cdot B <<1
\]則一般而言我們沒有辦法到底是一組弦波或者兩個不同頻率得弦波。此議題等價物理中的 Heisenberg's Uncertainty Principle。



留言

這個網誌中的熱門文章

[數學分析] 什麼是若且唯若 "if and only if"

數學上的 if and only if  ( 此文不討論邏輯學中的 if and only if,只討論數學上的 if and only if。) 中文翻譯叫做  若且唯若 (or 當且僅當) , 記得當初剛接觸這個詞彙的時候,我是完全不明白到底是甚麼意思,查了翻譯也是愛莫能助,畢竟有翻跟沒翻一樣,都是有看沒有懂。 在數學上如果看到 if and only if  這類的句子,其實是表示一種 雙條件句 ,通常可以直接將其視為" 定義(Definition)" 待之,今天要分享的是這樣的一個句子如何用比較直觀的方法去看他 假設我們現在有 兩個邏輯陳述句 A 與  B. 注意到,在此我們不必考慮這兩個陳述句到底是什麼,想表達什麼,或者到底是否為真(true),這些都不重要。只要知道是兩個陳述即可。 現在,考慮新的陳述:  "A if and only if B" 好了,現在主角登場,我們可以怎麼看待這個句子呢? 事實上我們可以很直覺的把這句子拆成兩部分看待,也就是 "( A if B ) and ( A only if B )" 那麼先針對第一個部分  A if B  來看, 其實這句就是說  if B then A, 更直白一點就是 "if B is true, then A is also true".  在數學上等價可以寫為 "B implies A" .  或者更常用一個箭頭符號來表示 "B $\Rightarrow$  A"  現在針對第二個部分  A only if B 此句意指  "If B is not true, then A is also not true". 所以如果已知 A is true,  那麼按照上句不難推得 B is also true 也就是說  A only if B  等價為 "If A is true then B is also true". 同樣,也可以寫作   "A implies B"   或者用箭頭表示  "A   $\Rightarrow$     B".

[數學分析] 淺談各種基本範數 (Norm)

這次要介紹的是數學上一個重要的概念: Norm: 一般翻譯成 範數 (在英語中 norm 有規範的意思,比如我們說normalization就是把某種東西/物品/事件 做 正規化,也就是加上規範使其正常化),不過個人認為其實翻譯成 範數 也是看不懂的...這邊建議把 Norm 想成長度就好 (事實上norm是長度的抽象推廣), 也許讀者會認為好端端的長度不用,為何又要發明一個 norm 來自討苦吃?? 既抽象又艱澀。 事實上想法是這樣的: 比如說現在想要比較兩個數字 $3$ , $5$ 之間的大小,則我們可以馬上知道 $ 3 < 5 $;同樣的,如果再考慮小數與無理數如 $1.8753$ 與 $\pi$,我們仍然可以比較大小 $1.8753 < \pi = 3.1415...$ 故可以發現我們有辦法對 "純量" 做明確的比大小,WHY? 因為前述例子中 $3$, $5$, $1.8753$ or $\pi$ 其各自的大小有辦法被 "measure "! 但是如果是現在考慮的是一組數字 我們如何去measure 其大小呢?? 比如說 \[x:=[1, -2, 0.1, 0 ]^T \]上式的大小該是多少? 是 $1$? $-2$? $0.1$??? 再者如果更過分一點,我們考慮一個矩陣 \[A = \left[ {\begin{array}{*{20}{c}} 1&2\\ 3&4 \end{array}} \right] \],想要知道這個矩陣的大小又該怎麼辦?? 是 $1$ ? $2$ 還是 $4$ ?..其實現階段我們說不清楚。 也正是如此,可以發現我們確實需要新的 "長度" 的定義來幫助我們如何去 measure 矩陣/向量/甚至是函數的大小。 故此,我們首先定義甚麼是Norm,(也就是把 "長度" or "大小" 的本質抽離出來) ================== Definition: Norm 考慮 $V$ 為一個向量空間(Vector space),則我們說  Norm 為一個函數 $||\cdot|| : V \rightarrow \mathbb{R}$ 且滿足下列性質