跳到主要內容

[訊號與系統] Frequency Modulation 淺嚐:Chirp Signal

回憶一般 弦波訊號
\[
z(t) = A \cos(2 \pi f_0 t + \phi) = Re\{A e^{j (2 \pi f_0 t + \phi)}\}
\]其中 $A$ 為振幅 ,$f_0$ 為頻率,$\phi$ 為相位。由上式,我們可以定義 $z(t)$ 的 "角度" 記作
\[
\psi(t) := 2 \pi f_0 t + \phi
\]由於上式為 linear in $t$ ,我們可觀察
\[
\frac{d}{dt} \psi(t) = 2 \pi f_0 := \omega_i(t)
\] 故 $z(t)$ 的角度 隨時間的瞬時變化率 為 $2 \pi f_0$  其單位為 (rad/s) ,若我們將其除掉 $2\pi$ 即可得到 (瞬時)頻率 $f_0$ (單位為 Hz)。

上述想法可以被進一步推廣如下:

Frequency Modulation (FM) Signal
現在我們將上述 $z(t)$ 做進一步簡單的推廣:假設
\[
x(t) := A \cos(\psi (t)) = Re\{e^{j \psi(t)}\}
\]則我們可仿造前述的方法來定義 瞬時頻率 (instantaneous frequency),亦即我們先對 $\psi(t)$ 對 $t$ 微分,可得瞬時角頻率 (instantaneous angular frequency)
\[
\omega_i(t) :=  \frac{d}{dt} \psi(t)
\]若對上式兩邊同除以 $2 \pi$ ,可得瞬時頻率 (instantaneous frequency), 記作 $f_i(t)$, 如下
\[
f_i(t) :=\frac{1}{2\pi}\omega_i(t) =  \frac{1}{2 \pi} \frac{d}{dt} \psi(t)
\]單位為 Hz。

以下我們看個 FM 調頻中的一類特殊例子,假設我們想要創造一組 弦波訊號 使其 頻率可以包含一段我們感興趣頻段,比如說我們想創造一組聲音其頻率 從 300 Hz 並且一路往上到 800 Hz,一種常見的做法是採用 chirp signal 來達成,其特性如下:給定初始頻率 $f_{int}$ 與 終點頻率 $f_{end}$, chirp signal 保證訊號頻率在 $f_{int}$ 到 $f_{end}$ 之間以連續且線性方式改變(比如遞增或者遞減),故此法又稱線性調頻。

FM Signal Example: Chirp, or Linear Swept Frequency or Linear FM
以下我們考慮一類特殊的 FM 訊號,亦即我們取
\[
\psi(t) := 2\pi \mu t^2 + 2\pi f_0 t+\phi
\]則對應的瞬時頻率為
\[
f_i(t) := \frac{1}{2 \pi} \frac{d}{dt} \psi(t)  = 2 \mu t + f_0
\]亦即我們發現瞬時頻率隨時間遞增,且在 $t=0$時後我們有 起始頻率 $f_0$。讀者可使用 下列 matlab code 來聽聽看 chirp 訊號 (起始的 瞬時頻率為 300Hz 一路往上到 800Hz):

% Generate an play a chirp signal

fsamp = 11025; % sampling frequency

dur = 2;
mu = 125;
Amp = 6;
f0 = 300;

dt = 1/fsamp;
tt = 0 : dt : dur;

psi = 2*pi*(100 + f0*tt + mu*tt.*tt);
xx = real( Amp*exp(j*psi) );

soundsc( xx, fsamp );



留言

這個網誌中的熱門文章

[數學分析] 什麼是若且唯若 "if and only if"

數學上的 if and only if  ( 此文不討論邏輯學中的 if and only if,只討論數學上的 if and only if。) 中文翻譯叫做  若且唯若 (or 當且僅當) , 記得當初剛接觸這個詞彙的時候,我是完全不明白到底是甚麼意思,查了翻譯也是愛莫能助,畢竟有翻跟沒翻一樣,都是有看沒有懂。 在數學上如果看到 if and only if  這類的句子,其實是表示一種 雙條件句 ,通常可以直接將其視為" 定義(Definition)" 待之,今天要分享的是這樣的一個句子如何用比較直觀的方法去看他 假設我們現在有 兩個邏輯陳述句 A 與  B. 注意到,在此我們不必考慮這兩個陳述句到底是什麼,想表達什麼,或者到底是否為真(true),這些都不重要。只要知道是兩個陳述即可。 現在,考慮新的陳述:  "A if and only if B" 好了,現在主角登場,我們可以怎麼看待這個句子呢? 事實上我們可以很直覺的把這句子拆成兩部分看待,也就是 "( A if B ) and ( A only if B )" 那麼先針對第一個部分  A if B  來看, 其實這句就是說  if B then A, 更直白一點就是 "if B is true, then A is also true".  在數學上等價可以寫為 "B implies A" .  或者更常用一個箭頭符號來表示 "B $\Rightarrow$  A"  現在針對第二個部分  A only if B 此句意指  "If B is not true, then A is also not true". 所以如果已知 A is true,  那麼按照上句不難推得 B is also true 也就是說  A only if B  等價為 "If A is true then B is also true". 同樣,也可以寫作   "A implies B"   或者用箭頭表示  "A   $\Rightarrow$     B".

[數學分析] 淺談各種基本範數 (Norm)

這次要介紹的是數學上一個重要的概念: Norm: 一般翻譯成 範數 (在英語中 norm 有規範的意思,比如我們說normalization就是把某種東西/物品/事件 做 正規化,也就是加上規範使其正常化),不過個人認為其實翻譯成 範數 也是看不懂的...這邊建議把 Norm 想成長度就好 (事實上norm是長度的抽象推廣), 也許讀者會認為好端端的長度不用,為何又要發明一個 norm 來自討苦吃?? 既抽象又艱澀。 事實上想法是這樣的: 比如說現在想要比較兩個數字 $3$ , $5$ 之間的大小,則我們可以馬上知道 $ 3 < 5 $;同樣的,如果再考慮小數與無理數如 $1.8753$ 與 $\pi$,我們仍然可以比較大小 $1.8753 < \pi = 3.1415...$ 故可以發現我們有辦法對 "純量" 做明確的比大小,WHY? 因為前述例子中 $3$, $5$, $1.8753$ or $\pi$ 其各自的大小有辦法被 "measure "! 但是如果是現在考慮的是一組數字 我們如何去measure 其大小呢?? 比如說 \[x:=[1, -2, 0.1, 0 ]^T \]上式的大小該是多少? 是 $1$? $-2$? $0.1$??? 再者如果更過分一點,我們考慮一個矩陣 \[A = \left[ {\begin{array}{*{20}{c}} 1&2\\ 3&4 \end{array}} \right] \],想要知道這個矩陣的大小又該怎麼辦?? 是 $1$ ? $2$ 還是 $4$ ?..其實現階段我們說不清楚。 也正是如此,可以發現我們確實需要新的 "長度" 的定義來幫助我們如何去 measure 矩陣/向量/甚至是函數的大小。 故此,我們首先定義甚麼是Norm,(也就是把 "長度" or "大小" 的本質抽離出來) ================== Definition: Norm 考慮 $V$ 為一個向量空間(Vector space),則我們說  Norm 為一個函數 $||\cdot|| : V \rightarrow \mathbb{R}$ 且滿足下列性質