跳到主要內容

[機率論] 連續隨機變數條件機率的定義

若 $X$ 是連續隨機變數,則其累積機率分配(cumulative distribution function, cdf)
\[
F_X(x) := P(X \leq x) = \int_{-\infty}^x f_X(t) dt
\]為 (對 $x$ ) 連續函數,故單點機率測度 $P(X=x) =0$。但若我們考慮條件機率的情況事情會變得稍微有點棘手,因為假設我們引入第二個連續隨機變數 $Y$且假設 $X,Y$ 為 jointly continuous,現在我們想計算 $P(Y \in C| X=x)$,由條件機率定義可知
\[
P(Y \in C| X=x) = \frac{P(X=x,Y=c)}{P(X=x)}
\]但此時我們發現因為 $P(X=x) =0$,分母是$ 0$。對於這種情況我們該怎麼對 連續隨機機變數定義其條件機率?或者更簡單的說,該怎麼計算(或者定義)$P(Y \in C| X=x)$?


要計算 $P(Y \in C| X=x)$,我們首先考慮
\[
\lim_{h \to 0} P(Y \in C| x<X\leq x + h)
\]對任意 $h>0$而言,上述條件機率可寫成
\[P(Y \in C|x < X \leqslant x + h) = \frac{{P(Y \in C,x < X \leqslant x + h)}}{{P(x < X \leqslant x + h)}}\]注意到分子部分等價為
\[P(Y \in C,x < X \leqslant x + h) = P\left( {\left( {X,Y} \right) \in \left( {x,x + h} \right] \times C} \right)\]若 $X,Y$ 為 jointly continuous,則
\begin{align*}
  P(Y \in C|x < X \leqslant x + h) &= \frac{{P(Y \in C,x < X \leqslant x + h)}}{{P(x < X \leqslant x + h)}} \hfill \\
   &= \frac{{\int_x^{x + h} {\int_C^{} {{f_{XY}}\left( {t,s} \right)dsdt} } }}{{\int_x^{x + h} {{f_X}\left( t \right)dt} }} \hfill \\
\end{align*} 對上式分子分母同除 $1/h$ 並且讓 $h \to 0$ ,利用下文中的 FACT可得
\begin{align*}
  \mathop {\lim }\limits_{h \to 0} P(Y \in C|x < X \leqslant x + h) &= \mathop {\lim }\limits_{h \to 0} \frac{{\frac{1}{h}\int_x^{x + h} {\int_C^{} {{f_{XY}}\left( {t,s} \right)dsdt} } }}{{\frac{1}{h}\int_x^{x + h} {{f_X}\left( t \right)dt} }} \hfill \\
   &= \frac{{\int_C^{} {{f_{XY}}\left( {x,s} \right)ds} }}{{{f_X}\left( x \right)dt}} \hfill \\
\end{align*} 由上述 極限,我們可定義 在給定 $X$ 條件之下 ,$Y$的條件機率密度函數,記作 $f_{Y|X}$ 如下:
================

Definition: Conditional Probability and Conditional Density: 對任意 $x$ 滿足 $f_X(x) >0$,給定 $X$ 條件之下 ,$Y$的條件機率密度函數定義為
\[
f_{Y|X}(y|x) := \frac{f_{XY}(x,y)}{f_X(x)}
\]由 $f_{Y|X} $,我們可定義 給定條件 $X=x$ 之下,事件 $Y \in C$ 的條件機率為
\[
P(Y \in C|X=x):= \int_C f_{Y|X}(y|x)dy
\]================

Comments: 1. 同理,我們可定義 Conditional CDF 記作 $F_{Y|X}$ 滿足
\[
F_{Y|X}(y|x) := P(Y \leq y| X = x) = \int_{-\infty}^y f_{Y|X}(t|x) dt
\]2. 讀者應不難驗證 $\int_{-\infty}^{\infty} f_{Y|X}(y|x)dy = 1$。

================
FACT: 令 $X$ 為隨機變數配備 機率密度函數(probability density function, pdf) $f_X$,則
\[\lim_{h \to 0}\frac{1}{h}\int_x^{x + h} {{f_X}\left( t \right)dt}  = F_X'(x) =f_X(x)\]其中 $F_X$ 為 $X$ 累積分配函數(cdf)。
================

Proof: 首先觀察
\[\frac{1}{h}\int_x^{x + h} {{f_X}\left( t \right)dt}  = \frac{1}{h}\left( {{F_X}\left( {x + h} \right) - {F_X}\left( x \right)} \right)\]現在讓 $h\to 0$我們有
\[\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\int_x^{x + h} {{f_X}\left( t \right)dt}  = \mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left( {{F_X}\left( {x + h} \right) - {F_X}\left( x \right)} \right) = F'(x)\]若 density 存在,則利用 pdf 是 cdf的微分的事實,
\[
F_X'(x) = f_X(x)
\] 至此證明完畢。$\square$

留言

這個網誌中的熱門文章

[數學分析] 什麼是若且唯若 "if and only if"

數學上的 if and only if  ( 此文不討論邏輯學中的 if and only if,只討論數學上的 if and only if。) 中文翻譯叫做  若且唯若 (or 當且僅當) , 記得當初剛接觸這個詞彙的時候,我是完全不明白到底是甚麼意思,查了翻譯也是愛莫能助,畢竟有翻跟沒翻一樣,都是有看沒有懂。 在數學上如果看到 if and only if  這類的句子,其實是表示一種 雙條件句 ,通常可以直接將其視為" 定義(Definition)" 待之,今天要分享的是這樣的一個句子如何用比較直觀的方法去看他 假設我們現在有 兩個邏輯陳述句 A 與  B. 注意到,在此我們不必考慮這兩個陳述句到底是什麼,想表達什麼,或者到底是否為真(true),這些都不重要。只要知道是兩個陳述即可。 現在,考慮新的陳述:  "A if and only if B" 好了,現在主角登場,我們可以怎麼看待這個句子呢? 事實上我們可以很直覺的把這句子拆成兩部分看待,也就是 "( A if B ) and ( A only if B )" 那麼先針對第一個部分  A if B  來看, 其實這句就是說  if B then A, 更直白一點就是 "if B is true, then A is also true".  在數學上等價可以寫為 "B implies A" .  或者更常用一個箭頭符號來表示 "B $\Rightarrow$  A"  現在針對第二個部分  A only if B 此句意指  "If B is not true, then A is also not true". 所以如果已知 A is true,  那麼按照上句不難推得 B is also true 也就是說  A only if B  等價為 "If A is true then B is also true". 同樣,也可以寫作   "A implies B"   或者用箭頭表示  "A   $\Rightarrow$     B".

[數學分析] 淺談各種基本範數 (Norm)

這次要介紹的是數學上一個重要的概念: Norm: 一般翻譯成 範數 (在英語中 norm 有規範的意思,比如我們說normalization就是把某種東西/物品/事件 做 正規化,也就是加上規範使其正常化),不過個人認為其實翻譯成 範數 也是看不懂的...這邊建議把 Norm 想成長度就好 (事實上norm是長度的抽象推廣), 也許讀者會認為好端端的長度不用,為何又要發明一個 norm 來自討苦吃?? 既抽象又艱澀。 事實上想法是這樣的: 比如說現在想要比較兩個數字 $3$ , $5$ 之間的大小,則我們可以馬上知道 $ 3 < 5 $;同樣的,如果再考慮小數與無理數如 $1.8753$ 與 $\pi$,我們仍然可以比較大小 $1.8753 < \pi = 3.1415...$ 故可以發現我們有辦法對 "純量" 做明確的比大小,WHY? 因為前述例子中 $3$, $5$, $1.8753$ or $\pi$ 其各自的大小有辦法被 "measure "! 但是如果是現在考慮的是一組數字 我們如何去measure 其大小呢?? 比如說 \[x:=[1, -2, 0.1, 0 ]^T \]上式的大小該是多少? 是 $1$? $-2$? $0.1$??? 再者如果更過分一點,我們考慮一個矩陣 \[A = \left[ {\begin{array}{*{20}{c}} 1&2\\ 3&4 \end{array}} \right] \],想要知道這個矩陣的大小又該怎麼辦?? 是 $1$ ? $2$ 還是 $4$ ?..其實現階段我們說不清楚。 也正是如此,可以發現我們確實需要新的 "長度" 的定義來幫助我們如何去 measure 矩陣/向量/甚至是函數的大小。 故此,我們首先定義甚麼是Norm,(也就是把 "長度" or "大小" 的本質抽離出來) ================== Definition: Norm 考慮 $V$ 為一個向量空間(Vector space),則我們說  Norm 為一個函數 $||\cdot|| : V \rightarrow \mathbb{R}$ 且滿足下列性質