跳到主要內容

[數理統計] 對平均值的信賴區間

考慮一組 i.i.d. random samples $X_1,X_2,...,$ 配備 期望平均 $m$ 與 變異數 (variance) $\sigma^2$,假設變異已知,但期望平均 $m$ 為未知。我們想對 $m$ 進行估計。一般的做法是採用 sample mean 估計量
\[
M_n := \frac{1}{n}\sum_{i = 1}^n X_i
\] 則我們知道 sample mean $M_n \to m$ 當 $n \to \infty$ in probability,此性質稱作 (weak) consistency estimator,但實際上,大多情況之下我們僅僅只能量測有限 $n$ (比如只能做有限次實驗),則我們想問該如何描述紹述 $M_n$ 有多接近 $m$ 呢?此想法為建構 信賴區間的動機:對某些 $\delta >0$ 而言,我們定義
\[
P(m \in [M_n -\delta, M_n + \delta] ) = 1-\alpha
\]其中 $[M_n -\delta, M_n + \delta] $ 稱作信賴區間(Confidence interval) 且 $1-\alpha$ 稱作 信心水準 (Confidence level),因此 Confidence interval 是一個隨機集合 而信心水準是 此隨機集合包含未知參數 $m$ 的機率。一般而言,在實務上多使用 $1-\alpha \in [0.9, 0.99]$。

Comments:
1. 上述 $M_n$ 不但為為 真實平均 (或者期望值) $m$  的 consistent estimator 且 亦為不偏 (unbiased)估計量。


問題:給定 $\alpha$,我們想問該如何選取參數 $\delta$ 使得 \[
P(m \in [M_n -\delta, M_n + \delta] ) = 1-\alpha
\]成立?

要回答此問題,我們首先觀察
\[m \in [{M_n} - \delta ,{M_n} + \delta ] \Leftrightarrow {M_n} - \delta  \leqslant m \leqslant {M_n} + \delta \]亦即 $- \delta  \leqslant m - {M_n} \leqslant \delta $ 此等價為
\[
|M_n - m| \leq \delta
\]故此
\[P(m \in [{M_n} - \delta ,{M_n} + \delta ]) = P\left( {\left| {{M_n} - m} \right| \leqslant \delta } \right)\]現在我們取
\[
\delta := \frac{\sigma y}{\sqrt{n}}
\] 上述 $\delta$ 的取法給了我們極大的方便,因為
\begin{align*}
  P\left( {\left| {{M_n} - m} \right| \leqslant \delta } \right) &= P\left( {\left| {{M_n} - m} \right| \leqslant \frac{{\sigma y}}{{\sqrt n }}} \right) \hfill \\
  & = P\left( {\left| {\frac{{{M_n} - m}}{{\sigma /\sqrt n }}} \right| \leqslant y} \right) \hfill \\
  & = P\left( { - y \leqslant \frac{{{M_n} - m}}{{\sigma /\sqrt n }} \leqslant y} \right) \hfill \\
   & = {F_{\frac{{{M_n} - m}}{{\sigma /\sqrt n }}}}\left( y \right) - {F_{\frac{{{M_n} - m}}{{\sigma /\sqrt n }}}}\left( { - y} \right) \hfill \\
\end{align*} 其中 $F_X(\cdot)$ 表示隨機變數 $X$的累積機率密度函數 (cdf)。由 中央極限定理(Central Limit Theorem, CLT) 我們可知 \[{F_{\frac{{{M_n} - m}}{{\sigma /\sqrt n }}}}\left( y \right) \to \Phi \left( y \right)\]其中 $\Phi(y)$ 為 標準常態分配的累積機率密度函數 (standard normal cdf) 滿足
\[
\Phi(y) := \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^y e^{-t^2/2} dt
\]故當 $n$ 足夠大的時候,
\[\begin{gathered}
  P\left( {\left| {{M_n} - m} \right| \leqslant \delta } \right) = {F_{\frac{{{M_n} - m}}{{\sigma /\sqrt n }}}}\left( y \right) - {F_{\frac{{{M_n} - m}}{{\sigma /\sqrt n }}}}\left( { - y} \right) \hfill \\
   \approx \Phi \left( y \right) - \Phi \left( { - y} \right) \hfill \\
\end{gathered} \]由於 $\Phi(y)$ 為 even density function,由附註的 FACT ,我們有 $\Phi(-y) =1 - \Phi(y)$ 故可推得
\[P\left( {\left| {{M_n} - m} \right| \leqslant \delta } \right) \approx \Phi \left( y \right) - \Phi \left( { - y} \right) = 2\Phi \left( y \right) - 1\]現在觀察上述結果,我們得到以下結論:若我們希望
\[P\left( {\left| {{M_n} - m} \right| \leqslant \delta } \right) = 1 - \alpha \]則等價求解 $2\Phi \left( y \right) - 1 = 1- \alpha$ 亦即
\[\Phi \left( y \right) = 1 - \frac{\alpha }{2}\]注意到上式與 $n$ 無關 且 也與 $X_i$ 的 pdf 無關!此式的解我們將其記作 $y_{\alpha/2}$ 在 MATLAB 我們可求解
\[
y_{\alpha/2} = \text{norminv(1-alpha/2)}
\]以下我們將上述討論記作以下結果。

====================
Theorem:
固定信心水準 $1-\alpha$ ,則其平均值 對應的 $(1-\alpha) \%$ 信賴區間 為
\[m \in \left[ {{M_n} - \frac{1}{{\sqrt n }}\sigma {y_{\alpha /2}},{M_n}  + \frac{1}{{\sqrt n }}\sigma {y_{\alpha /2}}} \right]\]
====================


接著我們看個例子:
====================
Example: 令 $X_1,X_2...$為 i.i.d. random samples 滿足 $\sigma = 2$。若我們已知 $M_{100} = 1 $ 試求出其真實平均 落在信心水準分別為 95% 與 99% 信賴區間:
====================

Proof: 對於 $95\%$ 信心水準,其 $\alpha = 1 - 0.95 = 0.05$。接著我們求解 $y_{\alpha/2}$,利用 MATLAB :
$$
y_{\alpha/2} = \text{norminv(1 - 0.05/2)} = 1.96
$$故其對應的 95% 信賴區間為
\begin{align*}
  m &\in \left[ {{M_n} - \frac{1}{{\sqrt n }}\sigma {y_{\alpha /2}},{M_n} + \frac{1}{{\sqrt n }}\sigma {y_{\alpha /2}}} \right] \\
&= \left[ {1 - \frac{1}{{\sqrt {100} }}2\left( {1.96} \right),1 + \frac{1}{{\sqrt {100} }}2\left( {1.96} \right)} \right] \hfill \\
  & = \left[ {0.608,1.392} \right] \hfill \\
\end{align*}

對於 99% 信心區間可用同樣方法,不難求得
\[
m \in [0.4848,  1.5152]
\]細節留給讀者自行練習。

由上述例子可看出當 信心水準越大,對應的信賴區間越大。另外注意到因為
\[m \in \left[ {{M_n} - \frac{1}{{\sqrt n }}\sigma {y_{\alpha /2}},{M_n}  + \frac{1}{{\sqrt n }}\sigma {y_{\alpha /2}}} \right]\]不難看出如果想要縮減信賴區間,另一種方法則是 增加 量測值,也就是把 $n$ 提高。


Comments:
注意到上述討論我們假設 random samples 已知變異數。若變異數未知,則我們使用變異數的不偏估計量 $S_n^2$ 取代,亦即使用
\[
S_n^2 = \frac{1}{N-1} \sum_{i=1}^n (X_i -m)^2
\]則前述的信賴區間變成
\[m \in \left[ {{M_n} - \frac{1}{{\sqrt n }}{S_n}{y_{\alpha /2}},{M_n} + \frac{1}{{\sqrt n }}{S_n}{y_{\alpha /2}}} \right]
\]證明我們暫且略過。



附註
=================
FACT:
令 $X$ 為配備 even density function $f$ 的隨機變數。若 $F$ 為任意 even density function $f$ 的 cdf函數,則
$$
F(-x) = 1 - F(x)
$$=================
Proof:
令 $f$ even density function ,則由 cdf 定義可知
\[F\left( { - x} \right): = P(X \leq -x) = \int_{ - \infty }^{ - x} {f\left( t \right)dt} \]現在引入變數變換,令 $t := -y$則
\[\int_{ - \infty }^{ - x} {f\left( t \right)dt}  =  - \int_\infty ^x {f\left( { - y} \right)dy} \]由於 $f$ 為 even function 故 $f(-y) = f(y) \;\; \forall y $,所以
\begin{align*}
  \int_{ - \infty }^{ - x} {f\left( t \right)dt}  &=  - \int_\infty ^x {f\left( { - y} \right)dy}  \hfill \\
  & =  - \int_\infty ^x {f\left( y \right)dy}  \hfill \\
  & = \int_x^\infty  {f\left( y \right)dy}  = 1 - F\left( x \right) \hfill \\
\end{align*} 換言之,我們得到
\[
F(-x) = 1 - F(x)
\]至此得證。$\square$

上述 FACT 亦可用反證法求證,在此不贅述。

留言

這個網誌中的熱門文章

[數學分析] 什麼是若且唯若 "if and only if"

數學上的 if and only if  ( 此文不討論邏輯學中的 if and only if,只討論數學上的 if and only if。) 中文翻譯叫做  若且唯若 (or 當且僅當) , 記得當初剛接觸這個詞彙的時候,我是完全不明白到底是甚麼意思,查了翻譯也是愛莫能助,畢竟有翻跟沒翻一樣,都是有看沒有懂。 在數學上如果看到 if and only if  這類的句子,其實是表示一種 雙條件句 ,通常可以直接將其視為" 定義(Definition)" 待之,今天要分享的是這樣的一個句子如何用比較直觀的方法去看他 假設我們現在有 兩個邏輯陳述句 A 與  B. 注意到,在此我們不必考慮這兩個陳述句到底是什麼,想表達什麼,或者到底是否為真(true),這些都不重要。只要知道是兩個陳述即可。 現在,考慮新的陳述:  "A if and only if B" 好了,現在主角登場,我們可以怎麼看待這個句子呢? 事實上我們可以很直覺的把這句子拆成兩部分看待,也就是 "( A if B ) and ( A only if B )" 那麼先針對第一個部分  A if B  來看, 其實這句就是說  if B then A, 更直白一點就是 "if B is true, then A is also true".  在數學上等價可以寫為 "B implies A" .  或者更常用一個箭頭符號來表示 "B $\Rightarrow$  A"  現在針對第二個部分  A only if B 此句意指  "If B is not true, then A is also not true". 所以如果已知 A is true,  那麼按照上句不難推得 B is also true 也就是說  A only if B  等價為 "If A is true then B is also true". 同樣,也可以寫作   "A implies B"   或者用箭頭表示  "A   $\Rightarrow$     B".

[數學分析] 淺談各種基本範數 (Norm)

這次要介紹的是數學上一個重要的概念: Norm: 一般翻譯成 範數 (在英語中 norm 有規範的意思,比如我們說normalization就是把某種東西/物品/事件 做 正規化,也就是加上規範使其正常化),不過個人認為其實翻譯成 範數 也是看不懂的...這邊建議把 Norm 想成長度就好 (事實上norm是長度的抽象推廣), 也許讀者會認為好端端的長度不用,為何又要發明一個 norm 來自討苦吃?? 既抽象又艱澀。 事實上想法是這樣的: 比如說現在想要比較兩個數字 $3$ , $5$ 之間的大小,則我們可以馬上知道 $ 3 < 5 $;同樣的,如果再考慮小數與無理數如 $1.8753$ 與 $\pi$,我們仍然可以比較大小 $1.8753 < \pi = 3.1415...$ 故可以發現我們有辦法對 "純量" 做明確的比大小,WHY? 因為前述例子中 $3$, $5$, $1.8753$ or $\pi$ 其各自的大小有辦法被 "measure "! 但是如果是現在考慮的是一組數字 我們如何去measure 其大小呢?? 比如說 \[x:=[1, -2, 0.1, 0 ]^T \]上式的大小該是多少? 是 $1$? $-2$? $0.1$??? 再者如果更過分一點,我們考慮一個矩陣 \[A = \left[ {\begin{array}{*{20}{c}} 1&2\\ 3&4 \end{array}} \right] \],想要知道這個矩陣的大小又該怎麼辦?? 是 $1$ ? $2$ 還是 $4$ ?..其實現階段我們說不清楚。 也正是如此,可以發現我們確實需要新的 "長度" 的定義來幫助我們如何去 measure 矩陣/向量/甚至是函數的大小。 故此,我們首先定義甚麼是Norm,(也就是把 "長度" or "大小" 的本質抽離出來) ================== Definition: Norm 考慮 $V$ 為一個向量空間(Vector space),則我們說  Norm 為一個函數 $||\cdot|| : V \rightarrow \mathbb{R}$ 且滿足下列性質