跳到主要內容

[凸分析] 凸性 與 齊次性 的關聯 (1):定義 與 一些常見例子


Definition:  Homogenous Function of Degree Alpha
令 $C \subset \mathbb{R}^n$ 為 convex cone。我們說函數 $f: C \to \mathbb{R}$ 為  $\alpha$ 次齊次函數 (homogeneous of degree $\alpha \in \mathbb{R}$) 若下列條件成立:
對任意 $x \in C$,
\[
f(t x) = t^\alpha f(x),\;\;\; \forall t >0
\]

Comments:
1.上述 齊次函數 定義可以推廣到不是在 convex cone上而是任意向量空間,但一般做 convex cone的假設是為了 其他在凸分析上的 用途。在比較深入的凸分析教材中,可能會探討所謂 廣義凸性(generalized convexity)比如 quasi-convexity, quasi-concavity, semi-strictly quasi-convexity 等等,則此時函數定義域 需要是凸集。

2. 注意到 degree of homogeneity $\alpha \in \mathbb{R}$,意指 此 $\alpha$ 為任意實數,正數,負數,零 或者其他都可以。

3. 我們說 $f$ 為 homogenous of degree $0$ 若對任意 $x \in C$,
\[
f(tx) = f(x), \forall t>0
\]若 $f$ 為 homogenous of degree $1$ 一般稱之為 linearly homogeneous ,亦即 對任意 $x \in C$
\[
f(tx) = t f(x), \forall t>0
\] 以下我們看幾個例子:

Example 1
考慮 需求函數 (Demand Function)
\[
D(p,R) := \frac{R}{p}
\]其中 $p > 0$ 為 price of a good 且 $R>0$ 為 income,試證此函數為 homogeneous of degree 0

Proof: 令 $C :=\{(p,r): p>0, R>0\}$,則此集合為一個 convex cone,現在觀察對任意 $(p,r) \in C$,
\[
D(tp, tR) = \frac{tR}{tp} = \frac{R}{p} = t^0 D(p,r)
\]上式對任意 $t>0$ 成立,故由定義可知 $D(p,r)$ 為 homogenous of degree zero,至此證畢。$\square$


Example 2:
考慮 生產函數 (Production Function)
\[
f(L,K) := L^{1/3} K^{2/3}
\]其中 $L>0$ 為投入的勞力 (labour) 且 $K>0$ 為 投入資本 capital,試證生產函數 $f$ 為 homogenous of degree $1$

Proof: 令 $C:= \{(L,K): L>0, K>0\}$ ,則可知 $C$ 為一個 convex cone。現在取任意 $(L,K) \in C$,我們有
\[f(tL,tK): = {\left( {tL} \right)^{1/3}}{\left( {tK} \right)^{2/3}} = t{\left( L \right)^{1/3}}{\left( K \right)^{2/3}} = t f(L,K)
\]上式對任意 $t>0$ 成立,故由定義可知 $D(p,r)$ 為 homogenous of degree zero,至此證畢。$\square$

Comments:
上述的生產函數 在經濟學中被稱為 Cobb-Douglas Function,在一般 計量經濟 中通常記作
\[
f(K,L) := A K^\alpha L^{1- \alpha}
\]此式子命名來自 兩位美國學者 C. W. Cobb 與 P. H. Douglas 於 1927 提出,此函數用以估計生產量,但事實上此式早在 1900之前就由 瑞士經濟學家 Knut Wicksell 已率先提出。此為軼事與本文無關只是單純提及。


接著我們看個上述生產函數的推廣,在(個體)經濟學中常見的 Cobb-Douglas Function:

===============
Theorem: Generalized Cobb-Douglas Function is Homogenous of Degree Alpha
令 $A>0, x_i>0, \alpha_i>0, i =1,2,...,n$,定義 Cobb-Douglas 函數
\[
f(x): = Ax_1^{{\alpha _1}}x_2^{{\alpha _2}} \cdots x_n^{{\alpha _n}}
\]則 $f$ 為 Homogeneous of degree $\alpha := \sum_{i=1}^n \alpha_i$
===============

Proof: 令 $C:=\{x=(x_1,x_2,...,x_n): x_i >0\}$ ,則不難發現 $C$ 為  convex cone,現在取任意 $x = (x_1,...,x_n) \in C$,我們觀察
\begin{align*}
  f(tx) &: = A\left( {t{x_1}} \right)_{}^{{\alpha _1}}\left( {t{x_2}} \right)_{}^{{\alpha _2}} \cdots \left( {t{x_n}} \right)_{}^{{\alpha _n}} \hfill \\
   &= A{t^{\sum\limits_{i = 1}^n {{\alpha _i}} }}\left( {{x_1}} \right)_{}^{{\alpha _1}}\left( {{x_2}} \right)_{}^{{\alpha _2}} \cdots \left( {{x_n}} \right)_{}^{{\alpha _n}} \hfill \\
   &= {t^{\sum\limits_{i = 1}^n {{\alpha _i}} }}\underbrace {A\left( {{x_1}} \right)_{}^{{\alpha _1}}\left( {{x_2}} \right)_{}^{{\alpha _2}} \cdots \left( {{x_n}} \right)_{}^{{\alpha _n}}}_{ = f\left( x \right)} \\
&= {t^\alpha }f\left( x \right)
\end{align*} 其中 $\alpha:= \sum_{i=1}^n \alpha_i$,上述等式對任意 $t>0$ 成立,故 $f$ 為 Homogeneous of degree $\alpha := \sum_{i=1}^n \alpha_i$,至此證畢。$\square$


Comments:
上述 Cobb-Douglas function $f$ 亦俱備 log-linear 性質,亦即對 $f$ 取 $\log (.)$ 之後為線性函數:觀察
\begin{align*}
 \log \left( {f\left( x \right)} \right) &= \log \left( {Ax_1^{{\alpha _1}}x_2^{{\alpha _2}} \cdots x_n^{{\alpha _n}}} \right) \hfill \\
   &= \log \left( A \right) + {\alpha _1}\log \left( {x_1^{}} \right) + {\alpha _2}\log \left( {x_2^{}} \right) + ... + {\alpha _n}\log \left( {x_n^{}} \right) \hfill \\
\end{align*} 由上述結果不難看出 $\log(f)$ 為 linear functions of $\log(x_1), \log(x_2),...,\log(x_n)$




留言

這個網誌中的熱門文章

[數學分析] 什麼是若且唯若 "if and only if"

數學上的 if and only if  ( 此文不討論邏輯學中的 if and only if,只討論數學上的 if and only if。) 中文翻譯叫做  若且唯若 (or 當且僅當) , 記得當初剛接觸這個詞彙的時候,我是完全不明白到底是甚麼意思,查了翻譯也是愛莫能助,畢竟有翻跟沒翻一樣,都是有看沒有懂。 在數學上如果看到 if and only if  這類的句子,其實是表示一種 雙條件句 ,通常可以直接將其視為" 定義(Definition)" 待之,今天要分享的是這樣的一個句子如何用比較直觀的方法去看他 假設我們現在有 兩個邏輯陳述句 A 與  B. 注意到,在此我們不必考慮這兩個陳述句到底是什麼,想表達什麼,或者到底是否為真(true),這些都不重要。只要知道是兩個陳述即可。 現在,考慮新的陳述:  "A if and only if B" 好了,現在主角登場,我們可以怎麼看待這個句子呢? 事實上我們可以很直覺的把這句子拆成兩部分看待,也就是 "( A if B ) and ( A only if B )" 那麼先針對第一個部分  A if B  來看, 其實這句就是說  if B then A, 更直白一點就是 "if B is true, then A is also true".  在數學上等價可以寫為 "B implies A" .  或者更常用一個箭頭符號來表示 "B $\Rightarrow$  A"  現在針對第二個部分  A only if B 此句意指  "If B is not true, then A is also not true". 所以如果已知 A is true,  那麼按照上句不難推得 B is also true 也就是說  A only if B  等價為 "If A is true then B is also true". 同樣,也可以寫作   "A implies B"   或者用箭頭表示  "A   $\Rightarrow$     B".

[數學分析] 淺談各種基本範數 (Norm)

這次要介紹的是數學上一個重要的概念: Norm: 一般翻譯成 範數 (在英語中 norm 有規範的意思,比如我們說normalization就是把某種東西/物品/事件 做 正規化,也就是加上規範使其正常化),不過個人認為其實翻譯成 範數 也是看不懂的...這邊建議把 Norm 想成長度就好 (事實上norm是長度的抽象推廣), 也許讀者會認為好端端的長度不用,為何又要發明一個 norm 來自討苦吃?? 既抽象又艱澀。 事實上想法是這樣的: 比如說現在想要比較兩個數字 $3$ , $5$ 之間的大小,則我們可以馬上知道 $ 3 < 5 $;同樣的,如果再考慮小數與無理數如 $1.8753$ 與 $\pi$,我們仍然可以比較大小 $1.8753 < \pi = 3.1415...$ 故可以發現我們有辦法對 "純量" 做明確的比大小,WHY? 因為前述例子中 $3$, $5$, $1.8753$ or $\pi$ 其各自的大小有辦法被 "measure "! 但是如果是現在考慮的是一組數字 我們如何去measure 其大小呢?? 比如說 \[x:=[1, -2, 0.1, 0 ]^T \]上式的大小該是多少? 是 $1$? $-2$? $0.1$??? 再者如果更過分一點,我們考慮一個矩陣 \[A = \left[ {\begin{array}{*{20}{c}} 1&2\\ 3&4 \end{array}} \right] \],想要知道這個矩陣的大小又該怎麼辦?? 是 $1$ ? $2$ 還是 $4$ ?..其實現階段我們說不清楚。 也正是如此,可以發現我們確實需要新的 "長度" 的定義來幫助我們如何去 measure 矩陣/向量/甚至是函數的大小。 故此,我們首先定義甚麼是Norm,(也就是把 "長度" or "大小" 的本質抽離出來) ================== Definition: Norm 考慮 $V$ 為一個向量空間(Vector space),則我們說  Norm 為一個函數 $||\cdot|| : V \rightarrow \mathbb{R}$ 且滿足下列性質