跳到主要內容

[訊號處理] 離散時間 的 Parserval's Theorem

Discrete-Time Parserval's Theorem:
令 $x[n]$ 為 取實數值的離散時間訊號; i.e., 對任意整數 $n$ 而言,
 $x[n] \in \mathbb{R}$ 且令 $X(\omega) := DTFT(x[n])$,則下列等式成立  \[\sum\limits_{n =  - \infty }^\infty  {{{\left| {x\left[ n \right]} \right|}^2} = \frac{1}{{2\pi }}\int_0^{2\pi } {{{\left| {X\left( \omega  \right)} \right|}^2}d\omega } } \]其中 $DTFT(x[n])$ 表示 對 $x[n] $ 取 離散時間傅立葉轉換 (Discrete Time Fourier Transform, DTFT),亦即
\[
X(\omega) := \sum_{n = -\infty}^\infty x[n] e^{-j \omega n}
\]

Comments:
1. 在訊號處理或者訊號分析的領域,上述定理有可被賦予的物理意義:一般我們把 Parserval's theorem 等式左方 稱為 訊號 $x[n]$ 的 總能量 (total energy),現在觀察右式表示對 $|X(\omega)|$ 做 $2 \pi$ 週期積分,因為 DTFT 為 $2\pi$ 週期,故右式 事實上是對所有的頻率積分等於 總能量,那麼被積分項 $|X(\omega)|$ 很自然的被稱作 頻譜密度 spectral (power) density
2. 考慮 $x(t)$ 為訊號,則 $\sum\limits_{n =  - \infty }^\infty  {{{\left| {x\left[ n \right]} \right|}^2}} $ 稱作此訊號的 total energy
3. 數學上的觀點,上述提及的 總能量  = 自己與自己在 函數空間做 內積 。
4. 另一種數學上的觀點:若 $x[n]$ 想成向量空間的一個向量,則總能量 $$\sum\limits_{n =  - \infty }^\infty  {{{\left| {x\left[ n \right]} \right|}^2}} $$ 可想成 $x[n]$ "長度" 的平方 ($l_2$-norm 平方)。
5. Fourier 轉換 是保持長度(norm preserving)的一種 線性轉換。
6. 上述 定理中我們雖僅考慮任意 實數值訊號 $x[n] \in \mathbb{R}, \;\;\; \forall \; n$ ,但事實上此定理對 $x[n] \in \mathbb{C}$ 亦成立。
7. 當然,有 離散時間傅立葉轉換,亦有 反轉換,稱作 Inverse Discrete Time Fourier Transform, IDTFT。


以下我們給出上述定理的證明

Proof: 給定 $x[n]$ 與其對應的 DTFT $X(\omega)$,我們要證明 Parserval's theorem 等式成立。故首先定義一個 輔助函數
\[
y\left[ m \right]: = \sum\limits_{n =  - \infty }^\infty  {x\left[ n \right]x\left[ {n - m} \right]}  \;\;\; (\star)
\] 上述 $y$ 一般稱作是 $x$ 的 自相關函數 (auto-correlation function) 。定義此函數的好處是我們可以利用 DTFT的各種性質來求證 Parserval's theorem。現在觀察 \[
 y\left[ 0 \right] = \sum\limits_{n = - \infty }^\infty {x\left[ 0 \right]x\left[ {n - 0} \right]} = \sum\limits_{n = - \infty }^\infty {{x^2}\left[ n \right]}
 \]此為要證明的 Parserval's 等式左方。

接著我們觀察 auto-correlation function $y[n]$ 為時域訊號,可透過 IDTFT 來表示 (why?),亦即
\[y[n] = \frac{1}{{2\pi }}\int_0^{2\pi } Y (\omega ){e^{j\omega n}}d\omega \]注意到當 $n=0$,我們有
\[y[0] = {\left. {\left( {\frac{1}{{2\pi }}\int_0^{2\pi } Y (\omega ){e^{j\omega n}}d\omega } \right)} \right|_{n = 0}} = \frac{1}{{2\pi }}\int_0^{2\pi } Y (\omega )d\omega \]至此不難發現若 $Y(\omega) = |X(\omega)|^2$ 則 Parseval's theorem得證。要達成此目標,我們觀察上述  $(\star)$式 事實上等價為
\[ y[n] = x[n] * x[-n]
\]其中 $*$ 表示 convolution。 (讀者應回憶 convolution 定義並自行驗證。) 回憶 DTFT 的 convolution 性質:亦即 時域 convolution 等價為 頻域做 multiplication。 故我們對 $(\star)$式 兩邊同取 DTFT 可得
\[y\left[ m \right] = x\left[ m \right]*x\left[ { - m} \right] \Rightarrow Y\left( \omega  \right) = X\left( \omega  \right){X^*}\left( \omega  \right) = |X(\omega)|^2\]
注意到在此我們使用了另一個 FACT: 若 $X(\omega) := DTFT(x[n])$,則 $DTFT(x[-n]) = X^*(\omega)$。

現在比較 $y[0]$ 可得\[\left\{ \begin{gathered} y\left[ 0 \right] = \sum\limits_{n = - \infty }^\infty {{x^2}\left[ n \right]} \hfill \\ y[0] = \frac{1}{{2\pi }}\int_0^{2\pi } {{{\left| {X\left( \omega \right)} \right|}^2}} d\omega \hfill \\ \end{gathered} \right. \Rightarrow \frac{1}{{2\pi }}\int_0^{2\pi } {{{\left| {X\left( \omega \right)} \right|}^2}} d\omega = \sum\limits_{n = - \infty }^\infty {{x^2}\left[ n \right]} \]至此證明完畢。$\square$

留言

這個網誌中的熱門文章

[數學分析] 什麼是若且唯若 "if and only if"

數學上的 if and only if  ( 此文不討論邏輯學中的 if and only if,只討論數學上的 if and only if。) 中文翻譯叫做  若且唯若 (or 當且僅當) , 記得當初剛接觸這個詞彙的時候,我是完全不明白到底是甚麼意思,查了翻譯也是愛莫能助,畢竟有翻跟沒翻一樣,都是有看沒有懂。 在數學上如果看到 if and only if  這類的句子,其實是表示一種 雙條件句 ,通常可以直接將其視為" 定義(Definition)" 待之,今天要分享的是這樣的一個句子如何用比較直觀的方法去看他 假設我們現在有 兩個邏輯陳述句 A 與  B. 注意到,在此我們不必考慮這兩個陳述句到底是什麼,想表達什麼,或者到底是否為真(true),這些都不重要。只要知道是兩個陳述即可。 現在,考慮新的陳述:  "A if and only if B" 好了,現在主角登場,我們可以怎麼看待這個句子呢? 事實上我們可以很直覺的把這句子拆成兩部分看待,也就是 "( A if B ) and ( A only if B )" 那麼先針對第一個部分  A if B  來看, 其實這句就是說  if B then A, 更直白一點就是 "if B is true, then A is also true".  在數學上等價可以寫為 "B implies A" .  或者更常用一個箭頭符號來表示 "B $\Rightarrow$  A"  現在針對第二個部分  A only if B 此句意指  "If B is not true, then A is also not true". 所以如果已知 A is true,  那麼按照上句不難推得 B is also true 也就是說  A only if B  等價為 "If A is true then B is also true". 同樣,也可以寫作   "A implies B"   或者用箭頭表示  "A   $\Rightarrow$     B".

[數學分析] 淺談各種基本範數 (Norm)

這次要介紹的是數學上一個重要的概念: Norm: 一般翻譯成 範數 (在英語中 norm 有規範的意思,比如我們說normalization就是把某種東西/物品/事件 做 正規化,也就是加上規範使其正常化),不過個人認為其實翻譯成 範數 也是看不懂的...這邊建議把 Norm 想成長度就好 (事實上norm是長度的抽象推廣), 也許讀者會認為好端端的長度不用,為何又要發明一個 norm 來自討苦吃?? 既抽象又艱澀。 事實上想法是這樣的: 比如說現在想要比較兩個數字 $3$ , $5$ 之間的大小,則我們可以馬上知道 $ 3 < 5 $;同樣的,如果再考慮小數與無理數如 $1.8753$ 與 $\pi$,我們仍然可以比較大小 $1.8753 < \pi = 3.1415...$ 故可以發現我們有辦法對 "純量" 做明確的比大小,WHY? 因為前述例子中 $3$, $5$, $1.8753$ or $\pi$ 其各自的大小有辦法被 "measure "! 但是如果是現在考慮的是一組數字 我們如何去measure 其大小呢?? 比如說 \[x:=[1, -2, 0.1, 0 ]^T \]上式的大小該是多少? 是 $1$? $-2$? $0.1$??? 再者如果更過分一點,我們考慮一個矩陣 \[A = \left[ {\begin{array}{*{20}{c}} 1&2\\ 3&4 \end{array}} \right] \],想要知道這個矩陣的大小又該怎麼辦?? 是 $1$ ? $2$ 還是 $4$ ?..其實現階段我們說不清楚。 也正是如此,可以發現我們確實需要新的 "長度" 的定義來幫助我們如何去 measure 矩陣/向量/甚至是函數的大小。 故此,我們首先定義甚麼是Norm,(也就是把 "長度" or "大小" 的本質抽離出來) ================== Definition: Norm 考慮 $V$ 為一個向量空間(Vector space),則我們說  Norm 為一個函數 $||\cdot|| : V \rightarrow \mathbb{R}$ 且滿足下列性質