跳到主要內容

[機率論] 關於含有 Factorial 函數的求導的注意事項 - Erlang 分佈為例

在某些情況,我們可能會希望對含有 Factorial (比如說 $k!$, $k \in \mathbb{N}$) 的函數 取導數,但在求導 的過程中有些細微的部分需要多加留意。以下我們用一個例子來體現。

令 $m \in \mathbb{N}$,考慮隨機變數 $X$ 配備 Erlang 分佈
$$
F_X(x) := 1 - \sum_{k=0}^{m-1} \frac{(\lambda x)^k}{k!} e^{-\lambda x}, x>0
$$ 試證 其 機率密度函數 (Probability Density Function, pdf) $f_X$ 滿足
\[{f_X}\left( x \right) = \frac{{{{(\lambda x)}^{\left( {m - 1} \right)}}}}{{\left( {m - 1} \right)!}}\lambda {e^{ - \lambda x}}\]

(FALSE) Proof:
首先注意到分佈函數可導,故我們可利用 分佈函數的導數 為 密度函數 的性質 ($F'(x) = f(x)$),來求得 $f_X$。現在對 $F_X$ 求導
\[\frac{d}{{dx}}{F_X}(x) =  - \sum\limits_{k = 0}^{m - 1} {\left( {\underbrace {\frac{{k{{(\lambda x)}^{k - 1}}\lambda }}{{k!}}{e^{ - \lambda x}}}_{**} + \frac{{{{(\lambda x)}^k}}}{{k!}}\left( { - \lambda } \right){e^{ - \lambda x}}} \right)} \]注意到summation的第一項 $(**)$,讀者可能會很自然地認為 $**$ 可寫成
\[\frac{{k{{(\lambda x)}^{k - 1}}\lambda }}{{k!}}{e^{ - \lambda x}} = \frac{{k{{(\lambda x)}^{k - 1}}\lambda }}{{k\left( {k - 1} \right)!}}{e^{ - \lambda x}}\]
然後試圖對 分子分母的 $k$對消。但注意到此項 是在 summation內部,若對 分子 與 分母 進行 對消將產生問題,因為當 $k=0$ 時候會出現 難以處理未定義的 $-1!$ 。到此我們無法繼續進行,該怎麼避免這種問題呢?我們必須將可能出問題的 $k=0$ 項次分開討論。

Proof:
首先改寫

\[{F_X}(x): = 1 - \sum\limits_{k = 0}^{m - 1} {\frac{{{{(\lambda x)}^k}}}{{k!}}} {e^{ - \lambda x}} = 1 - (\lambda x){e^{ - \lambda x}} - \sum\limits_{k = 1}^{m - 1} {\frac{{{{(\lambda x)}^k}}}{{k!}}} {e^{ - \lambda x}}\]再取導數
\[\small
 \begin{align*}
  \frac{d}{{dx}}{F_X}(x) &= 0 - \left[ {\left( { - \lambda } \right){e^{ - \lambda x}} + \sum\limits_{k = 1}^{m - 1} {\left( {\frac{{k{{(\lambda x)}^{k - 1}}\lambda }}{{k!}}{e^{ - \lambda x}} + \frac{{{{(\lambda x)}^k}}}{{k!}}\left( { - \lambda } \right){e^{ - \lambda x}}} \right)} } \right] \hfill \\
   & =   - \left[ {\left( { - \lambda } \right){e^{ - \lambda x}} + \left( {\left( {\frac{{{{(\lambda x)}^0}}}{{1!}} - \frac{{{{(\lambda x)}^1}}}{{1!}}} \right) + \left( {\frac{{2{{(\lambda x)}^1}}}{{2!}} - \frac{{{{(\lambda x)}^2}}}{{2!}}} \right) + ... + \left( {\frac{{\left( {m - 1} \right){{(\lambda x)}^{\left( {m - 1} \right) - 1}}}}{{\left( {m - 1} \right)!}} - \frac{{{{(\lambda x)}^{\left( {m - 1} \right)}}}}{{\left( {m - 1} \right)!}}} \right)} \right)\lambda {e^{ - \lambda x}}} \right]\hfill \\
  & = \lambda {e^{ - \lambda x}} - \left( {\frac{{{{(\lambda x)}^0}}}{{1!}}\underbrace { - \frac{{{{(\lambda x)}^1}}}{{1!}} + \frac{{2{{(\lambda x)}^1}}}{{2!}}}_{ = 0}\underbrace { - \frac{{{{(\lambda x)}^2}}}{{2!}} + \frac{{3{{(\lambda x)}^2}}}{{3!}}}_{ = 0}\underbrace { - \frac{{{{(\lambda x)}^3}}}{{3!}} + }_{ = 0}...\underbrace { + \frac{{\left( {m - 1} \right){{(\lambda x)}^{\left( {m - 1} \right) - 1}}}}{{\left( {m - 1} \right)!}}}_{ = 0} - \frac{{{{(\lambda x)}^{\left( {m - 1} \right)}}}}{{\left( {m - 1} \right)!}}} \right)\lambda {e^{ - \lambda x}} \hfill \\
  & = \lambda {e^{ - \lambda x}} - \left( {1 - \frac{{{{(\lambda x)}^{\left( {m - 1} \right)}}}}{{\left( {m - 1} \right)!}}} \right)\lambda {e^{ - \lambda x}} \hfill \\
   &= \frac{{{{(\lambda x)}^{\left( {m - 1} \right)}}}}{{\left( {m - 1} \right)!}}\lambda {e^{ - \lambda x}} \hfill \\
\end{align*} \]上述第三行等式為 telescoping sum,中間各項等於 $0$。至此證畢。$\square$

留言

這個網誌中的熱門文章

[數學分析] 什麼是若且唯若 "if and only if"

數學上的 if and only if  ( 此文不討論邏輯學中的 if and only if,只討論數學上的 if and only if。) 中文翻譯叫做  若且唯若 (or 當且僅當) , 記得當初剛接觸這個詞彙的時候,我是完全不明白到底是甚麼意思,查了翻譯也是愛莫能助,畢竟有翻跟沒翻一樣,都是有看沒有懂。 在數學上如果看到 if and only if  這類的句子,其實是表示一種 雙條件句 ,通常可以直接將其視為" 定義(Definition)" 待之,今天要分享的是這樣的一個句子如何用比較直觀的方法去看他 假設我們現在有 兩個邏輯陳述句 A 與  B. 注意到,在此我們不必考慮這兩個陳述句到底是什麼,想表達什麼,或者到底是否為真(true),這些都不重要。只要知道是兩個陳述即可。 現在,考慮新的陳述:  "A if and only if B" 好了,現在主角登場,我們可以怎麼看待這個句子呢? 事實上我們可以很直覺的把這句子拆成兩部分看待,也就是 "( A if B ) and ( A only if B )" 那麼先針對第一個部分  A if B  來看, 其實這句就是說  if B then A, 更直白一點就是 "if B is true, then A is also true".  在數學上等價可以寫為 "B implies A" .  或者更常用一個箭頭符號來表示 "B $\Rightarrow$  A"  現在針對第二個部分  A only if B 此句意指  "If B is not true, then A is also not true". 所以如果已知 A is true,  那麼按照上句不難推得 B is also true 也就是說  A only if B  等價為 "If A is true then B is also true". 同樣,也可以寫作   "A implies B"   或者用箭頭表示  "A   $\Rightarrow$     B".

[數學分析] 淺談各種基本範數 (Norm)

這次要介紹的是數學上一個重要的概念: Norm: 一般翻譯成 範數 (在英語中 norm 有規範的意思,比如我們說normalization就是把某種東西/物品/事件 做 正規化,也就是加上規範使其正常化),不過個人認為其實翻譯成 範數 也是看不懂的...這邊建議把 Norm 想成長度就好 (事實上norm是長度的抽象推廣), 也許讀者會認為好端端的長度不用,為何又要發明一個 norm 來自討苦吃?? 既抽象又艱澀。 事實上想法是這樣的: 比如說現在想要比較兩個數字 $3$ , $5$ 之間的大小,則我們可以馬上知道 $ 3 < 5 $;同樣的,如果再考慮小數與無理數如 $1.8753$ 與 $\pi$,我們仍然可以比較大小 $1.8753 < \pi = 3.1415...$ 故可以發現我們有辦法對 "純量" 做明確的比大小,WHY? 因為前述例子中 $3$, $5$, $1.8753$ or $\pi$ 其各自的大小有辦法被 "measure "! 但是如果是現在考慮的是一組數字 我們如何去measure 其大小呢?? 比如說 \[x:=[1, -2, 0.1, 0 ]^T \]上式的大小該是多少? 是 $1$? $-2$? $0.1$??? 再者如果更過分一點,我們考慮一個矩陣 \[A = \left[ {\begin{array}{*{20}{c}} 1&2\\ 3&4 \end{array}} \right] \],想要知道這個矩陣的大小又該怎麼辦?? 是 $1$ ? $2$ 還是 $4$ ?..其實現階段我們說不清楚。 也正是如此,可以發現我們確實需要新的 "長度" 的定義來幫助我們如何去 measure 矩陣/向量/甚至是函數的大小。 故此,我們首先定義甚麼是Norm,(也就是把 "長度" or "大小" 的本質抽離出來) ================== Definition: Norm 考慮 $V$ 為一個向量空間(Vector space),則我們說  Norm 為一個函數 $||\cdot|| : V \rightarrow \mathbb{R}$ 且滿足下列性質