跳到主要內容

[測度論] 關於 Almost Everywhere

給定測度空間 $(X,\mathcal{M},\mu)$我們說 某性質 $P$ almost everywhere 成立 意思是 對所有非零測度集合此性質 $P$ 都成立。(換言之,除零測度集之外,此性質 $P$ 都成立。)

Lemma:
假設 $f(x) \geq 0$ 且 $f$ 為 $(\mathcal{M}, \mathcal{B}_{\mathbb{R}})$ 可測。假設 $\int f d\mu = 0$ 則 $f(x) = 0$ almost everywhere (i.e., $\mu\{x: f(x)>0\} = 0$)

Proof:
令 $E:= \{x:f(x)>0\}$,我們要證明 $\mu(E) = 0$ 。為此,我們首先證明 $\mu(E_n) = 0$ 其中 $E_n :=\{x: f(x) > 1/n\}$。觀察以下事實 $\cup_n E_n = E$ 且 $E_n \uparrow E$。

觀察
\[
\mu(E_n) := \int 1_{E_n}  \;\;\;\;(*)
\]注意到對任意 $x\in E_n$,我們有 $f(x) > 1/n $,此等同於 $n f(x) > 1$ ,故對任意 $x\in E_n$, $nf(x) 1_{E_n}(x) > 1 \cdot 1_{E_n}(x)$ 。將此用到 $(*)$ 我們得到
\[
\mu(E_n) = \int 1_{E_n} < \int nf(x)1_{E_n} \leq \int nf(x) =n \underbrace{\int f(x) d\mu(x)}_{=0}
\]亦即
\[
\mu(E_n) = 0
\]最後我們檢驗
$$\mu(E) = \mu(\cup_n E_n) = \lim_n \mu(E_n) = 0$$即為所求。$\square$


Lemma 2:
給定 測度空間 $(X,\mathcal{M}, \mu)$ 且 $\mu$ 為complete measure,若 $f$ 為 $(\mathcal{M},\overline{\mathcal{B}}_{\mathbb{R}})$ measurable 且 $f=g$ almost everywhere 則 $g$ 亦為 $(\mathcal{M},\overline{\mathcal{B}}_{\mathbb{R}})$ measurable。

Proof:
要證明 $g$ 為 $(\mathcal{M},\overline{\mathcal{B}}_{\mathbb{R}})$ measurable,我們令 $I:=[a,\infty] \in \overline{\mathcal{B}}_{\mathbb{R}} $ 且僅需證明
$$
g^{-1}(I) \in \mathcal{M}
$$
為此,我們定義集合
\[
M:=\{x: f(x) \neq g(x)\}
\]且 $M \subset N$ 其中 $N$ 為 null set 滿足 $N \in \mathcal{M}$,亦即 $\mu(N)=0$ (故 $
\mu(M)=0$)。觀察
$$
g^{-1}(I) = \underbrace{(g^{-1}(I) \cap M^c)}_{\in \mathcal{M}} \cup \underbrace{(g^{-1}(I)\cap M)}_{\subset N \in \mathcal{M}} \in \mathcal{M}
$$至此證明完畢。$\square$

Lemma 3
令 $\{f_n\}$ 為在 $(X,\mathcal{M},\mu)$ 上的 measurable 函數數列,若 $\mu$ 為 complete measure,且 $\lim_n f_n(x)  = f(x)$ almost everywhere 則 $f$ 為 measurable 。

Proof:
注意到如果 $\lim_n f_n(x) = f(x)$ 逐點收斂,則 $f$ 必然為 measurable (因為 $\lim f_n = \limsup f_n = \liminf_n f_n$ 且 $\limsup f_n$ 與 $\liminf f_n$ 都 measurable)。若 $\lim_n f_n(x) = f(x)$ almost everywhere 令 $N:=\{x: \lim_n f_n(x) \text{ does not exists}\}$ 且 $N \in \mathcal{M}$ 且 $\mu(N)=0$。定義新的函數 $g_n : X \to [-\infty,\infty]$ 滿足
\[ g_n(x):= \begin{cases}
      f_n(x) & x \in N^c \\
      0 & x \in N
   \end{cases}
\]則對任意 $x\in X$,$\lim_n g_n(x)$ 存在,因為
\[ \lim_n g_n(x):= \begin{cases}
      f(x) & x \in N^c \\
      0 & x \in N
   \end{cases} \;\;\;\;(*)
\]將此極限記作 $g(x) := \lim_n g_n(x)$。由於 $N^c,N \in \mathcal{M}$ 故 $g$ 為 mesurable。除此之外,由 $(*)$ 我們得到 $g(x) = f(x)$ almost everywhere。由 Lemma 2 可知 $f$ 為 mesurable。至此證明完畢。 $\square$







留言

這個網誌中的熱門文章

[數學分析] 什麼是若且唯若 "if and only if"

數學上的 if and only if  ( 此文不討論邏輯學中的 if and only if,只討論數學上的 if and only if。) 中文翻譯叫做  若且唯若 (or 當且僅當) , 記得當初剛接觸這個詞彙的時候,我是完全不明白到底是甚麼意思,查了翻譯也是愛莫能助,畢竟有翻跟沒翻一樣,都是有看沒有懂。 在數學上如果看到 if and only if  這類的句子,其實是表示一種 雙條件句 ,通常可以直接將其視為" 定義(Definition)" 待之,今天要分享的是這樣的一個句子如何用比較直觀的方法去看他 假設我們現在有 兩個邏輯陳述句 A 與  B. 注意到,在此我們不必考慮這兩個陳述句到底是什麼,想表達什麼,或者到底是否為真(true),這些都不重要。只要知道是兩個陳述即可。 現在,考慮新的陳述:  "A if and only if B" 好了,現在主角登場,我們可以怎麼看待這個句子呢? 事實上我們可以很直覺的把這句子拆成兩部分看待,也就是 "( A if B ) and ( A only if B )" 那麼先針對第一個部分  A if B  來看, 其實這句就是說  if B then A, 更直白一點就是 "if B is true, then A is also true".  在數學上等價可以寫為 "B implies A" .  或者更常用一個箭頭符號來表示 "B $\Rightarrow$  A"  現在針對第二個部分  A only if B 此句意指  "If B is not true, then A is also not true". 所以如果已知 A is true,  那麼按照上句不難推得 B is also true 也就是說  A only if B  等價為 "If A is true then B is also true". 同樣,也可以寫作   "A implies B"   或者用箭頭表示  "A   $\Rightarrow$     B".

[數學分析] 淺談各種基本範數 (Norm)

這次要介紹的是數學上一個重要的概念: Norm: 一般翻譯成 範數 (在英語中 norm 有規範的意思,比如我們說normalization就是把某種東西/物品/事件 做 正規化,也就是加上規範使其正常化),不過個人認為其實翻譯成 範數 也是看不懂的...這邊建議把 Norm 想成長度就好 (事實上norm是長度的抽象推廣), 也許讀者會認為好端端的長度不用,為何又要發明一個 norm 來自討苦吃?? 既抽象又艱澀。 事實上想法是這樣的: 比如說現在想要比較兩個數字 $3$ , $5$ 之間的大小,則我們可以馬上知道 $ 3 < 5 $;同樣的,如果再考慮小數與無理數如 $1.8753$ 與 $\pi$,我們仍然可以比較大小 $1.8753 < \pi = 3.1415...$ 故可以發現我們有辦法對 "純量" 做明確的比大小,WHY? 因為前述例子中 $3$, $5$, $1.8753$ or $\pi$ 其各自的大小有辦法被 "measure "! 但是如果是現在考慮的是一組數字 我們如何去measure 其大小呢?? 比如說 \[x:=[1, -2, 0.1, 0 ]^T \]上式的大小該是多少? 是 $1$? $-2$? $0.1$??? 再者如果更過分一點,我們考慮一個矩陣 \[A = \left[ {\begin{array}{*{20}{c}} 1&2\\ 3&4 \end{array}} \right] \],想要知道這個矩陣的大小又該怎麼辦?? 是 $1$ ? $2$ 還是 $4$ ?..其實現階段我們說不清楚。 也正是如此,可以發現我們確實需要新的 "長度" 的定義來幫助我們如何去 measure 矩陣/向量/甚至是函數的大小。 故此,我們首先定義甚麼是Norm,(也就是把 "長度" or "大小" 的本質抽離出來) ================== Definition: Norm 考慮 $V$ 為一個向量空間(Vector space),則我們說  Norm 為一個函數 $||\cdot|| : V \rightarrow \mathbb{R}$ 且滿足下列性質