跳到主要內容

[微分拓樸] 淺論 Manifold (2) - Manifold 的 Boundary 與 Regular point

回憶前篇,我們說一個 Manifold with boundary 定義如下:

==========================
Definition: Manifold with Boundary
集合 $M \subset \mathbb{R}^n$ 為 $k$-dimensional manifold of class $C^r$ 若下列條件成立:
對任意點 $p \in M$,存在鄰域 $U_p \subset \mathbb{R}^k$ open 或者 $U_p \subset \mathbb{H}^k$ open in $\mathbb{H}^k$ 且 $V_p \subset M$;與 coordinate patch $\alpha: U_p \to V_p$ 滿足
 (1) $\alpha \in C^r$
 (2) $\alpha^{-1} \in C^0$
 (3) $D \alpha$ 有 rank $k$
==========================


接著我們可以介紹 Manifold 的 Interior Point 與 Boundary point:

==========================
Definition: Interior Point and Boundary Point of a Manifold
令 $M \subset \mathbb{R}^n$ 為 $k$-manifold 且 $p \in M$
我們說 $p$ 為 Manifold $M$ 中的 interior point 若下列條件成立:
對上述的 $p$ 而言,存在 coordinate patch $\alpha : U_p \to V_p$ 使得 $U_p$ 為 open in $\mathbb{R}^k$

反之,我們則稱此點 $p$ 為 boundary point
==========================
Comments:
上述的定義的 interior/boundary point 與 一般的 topology 中定義的 interior/ boundary point 不盡相同! 讀者須小心分辨


以下我們有個更好的判斷法來辨別是否為 interior point 或者 boundary point :
==========================
Lemma: 令 $M$ 為 $k$-manifold in $\mathbb{R}^n$ 且定義 $\alpha: U_p \to V_p$ 為 coordinate patch about $p \in M$
1. 若 $U_p$ 為 open in $\mathbb{R}^k$ 則 $p$ 為 interior point of $M$
2. 若 $U_p$ 為 open in  $\mathbb{H}^k$ 且存在  $x_0 \in \mathbb{R}^{k-1} \times (0,\infty)$  使得 $p = \alpha(x_0)$ 則 $p$ 為 interior point of $M$
3. 若 $U_p$ 為 open in  $\mathbb{H}^k$ 且存在 $x_0 \in \mathbb{R}^{k-1} \times \{0\}$ 使得 $p = \alpha(x_0)$  則 $p$ 為 boundary point of $M$
==========================


$k$-Manifold 的非空邊界 為 $k-1$-Manifold。
==========================
Theorem: 令 $M$ 為 $k$-manifold of class $C^r$ 。令 $\partial M$ 為 $M$ 所有的 Boundary point 所形成的集合,若 $\partial M \neq \emptyset $ 則 $\partial M$ 為 $k-1$ manifold (without boundary)。
==========================


==========================
Definition: Critical Point, Regular Point, and its Values
令 $f : U \subset \mathbb{R}^m \to \mathbb{R}^n$ 為 $C^1$ mapping 且 令 $D f(x)$ 為 $f$ 的導數,則
1. 我們說 點 $p \in U$ 為 critical point of $f$ 若 $Df(p)$ 不為 full rank。
2. 我們說  $q \in \mathbb{R}^n$ 為 critical value of $f$ 若 存在 $p$ 為 critical point of  $f$ 使得 $f(p) = q$。
3. 我們說 $q \in \mathbb{R}^n$ 為 regular value of $f$ 若其並非 critical value
==========================

Comment:
在一維空間時候,可知所謂的 critical point 即為 一階導數為零的點。 


Graph 為 manifold。
==========================
FACT 1: Graph of a function is a manifold
令 $\beta: U \subset \mathbb{R}^n \to \mathbb{R}^k$ 為 $C^r$-mapping。則 graph of $\beta$
\[
\{(x, \beta(x)): x \in \mathbb{R}^n\} \subset \mathbb{R}^{n+k}
\] 為 $n$-manifold in $\mathbb{R}^{n+k}$
==========================


==========================
FACT 2: 任意 $M \subset \mathbb{R}^m$ 為 $k$-manifold 為一個 Local property:亦即
考慮 $M \subset \mathbb{R}^m$ 為子集合, 若 對任意 $p \in M$ 存在 open neighborhood $M'$ of $p$ 使得 $M'$ 為 $k$-manifold,則 $M$ 為 $k$-manifold。
==========================

Proof:
考慮 $M \subset \mathbb{R}^m$ 為子集合, 且給定任意 $p \in M$,可知 存在一個 open neighborhood $M'$ of $p$ 使得 $M'$ 為 $k$-manifold,

若 $p \in M'$ 為 $k$-manifold 則由 manifold 定義 存在 coordinate patch $\alpha :U \to V$ 其中 $U \subset \mathbb{H}^k$ 或者 $U \subset \mathbb{R}^k$ open  且 $V \subset M'$ open。

由於 $M'$ 為 open 故 $V \subset M$ 必為 open in $M$,因此 $\alpha$ 為 coordinate patch about $p$ into $M$ 且滿足所有 coordinate patch 所需的性質。故 $M$ 為 $k$-manifold;且  $k$-manifold 為一個 Local property。$\square$


上述兩個 FACT 可推得下面的重要結果:

==========================
Theorem: Regular Value Theorem
若 $f: U \subset \mathbb{R}^{n+k} \to \mathbb{R}^n$ 為 $C^r$-mapping 且 點 $p \in \mathbb{R}^n$ 為 regular value,則 對此點 $p$ 的 inverse image  $f^{-1}(p)$ 為 $k$-manifold。
==========================
comments:
注意到上述定理中 $p$ 為 regular value 故只為單值,不可放置多值 e.g., $f^{-1}[0,1]$。

現在我們給出上述 Regular Value Theorem 的證明:

Proof of Regular Value Theorem by using Rank Theorem
我們要證明其 inverse image $f^{-1}(p)$ 為 $k$-manifold。亦即給定 對任意 $p \in f^{-1}(p)$,要證  存在兩 open 鄰域 $U_p \subset \mathbb{R}^{k}, V_p \subset \mathbb{R}^n$ 且 有 coordinate patch $\alpha: U_p \to V_p$ 滿足三個條件。

由假設可知  $f: U \subset \mathbb{R}^{n+k} \to \mathbb{R}^n$ 為 $C^r$-mapping 且 點 $p \in \mathbb{R}^n$ 為 regular value, 故可知 $Df$ 具有 常數 rank $n$ 對任意 $q \in f^{-1}(p)$

現在回憶 Rank theorem:若 $f: U \subset \mathbb{R}^{n+k}$ 且導數 $Df(x)$ 具有 常數 rank 值,則:對點 $p_1 \in U$ 存在 $U_1, V_1 \subset \mathbb{R}^{n+k}$ 且有函數 $H: V_1 \to U_1$為 1-1 & onto 使得 對任意 $x \in V_1$,
\[
(f \circ H)(x) = f'(p_1) x + \varphi(f'(p_1))
\]且有 projection $P: \mathbb{R}^n \to \mathbb{R}(f(p_1))$ satisfying $P(\varphi(f(p_1)))x = 0$

令 $p \in \mathbb{R}^n$為 regular value, 我們考慮 $x$ 使得
\[
(f \circ H)(x) =p
\]但 $\{x \in V_1: (f \circ H)(x) =p\} = \{x \in V_1: f'(q)x = Pp\}:=L $ 其中 $f(q) = p$

注意到 $H^{-1}(q) \in L$,故 若$x_0 \in L, $ 則
\[
f'(q)x_0 = Pp
\]因此
\[
f'(q) (x_0 - H^{-1}(q)) = f'(q)x_0 - f'(q) H^{-1}(q) = Pp - Pp= 0
\]故 $x_0 = H^{-1}(q) + y$ 其中$y \in \mathcal{N}(f'(q))$. 現在觀察 $\mathcal{N}(f'(q))$ is a vector space with dimension $n+k-n = k$. (因為 range space 為 dimension $k$ )

令 $Q$ 為 composition of translation by $H^{-1}(q)$ and the linear map taking $\mathcal{N}(f'(q)) \to \mathbb{R}^k$

定義 $U_p := Q(L)$ 與 coordinate patch $\alpha := H \circ Q^{-1}: U_0 \to V_1$ 即為 所需的 coordinate patch. $\square$


看個例子:

Example 
考慮 $S:=\{(x,y): x^2 + y^2 = r^2\}$ 若我們選 $f(x,y) := x^2 + y^2$ 則 $f: \mathbb{R}^{1+1} \to \mathbb{R}^1$ 且為 $C^2$ mapping。 故現在我們檢驗何時會是 regular value,利用 critical value 的定義:檢驗其一階導數
 \[Df\left( x \right) = \left[ {\begin{array}{*{20}{c}}
{2x}\\
{2y}
\end{array}} \right]\]故可發現若 $(x,y) = (0,0)$ 時 其 一階導數無法維持 full rank。故除了 $(0,0)$ 以外的點皆為 regular point,其餘任意一點 $(x,y)$ 所對應的值 ( regular value ) 我們記做 $r$ 。由上述 Regular Value Theorem 可知 其 inverse image $f^{-1}(\{r\})$ 為 1-manifold。

注意到
\[{f^{ - 1}}(\{ 1\} ): = \{ (x,y):{x^2} + {y^2} = 1\}  = {S^1} = \{ (x,y):{x^2} + {y^2} = 1\} \]

留言

這個網誌中的熱門文章

[數學分析] 什麼是若且唯若 "if and only if"

數學上的 if and only if  ( 此文不討論邏輯學中的 if and only if,只討論數學上的 if and only if。) 中文翻譯叫做  若且唯若 (or 當且僅當) , 記得當初剛接觸這個詞彙的時候,我是完全不明白到底是甚麼意思,查了翻譯也是愛莫能助,畢竟有翻跟沒翻一樣,都是有看沒有懂。 在數學上如果看到 if and only if  這類的句子,其實是表示一種 雙條件句 ,通常可以直接將其視為" 定義(Definition)" 待之,今天要分享的是這樣的一個句子如何用比較直觀的方法去看他 假設我們現在有 兩個邏輯陳述句 A 與  B. 注意到,在此我們不必考慮這兩個陳述句到底是什麼,想表達什麼,或者到底是否為真(true),這些都不重要。只要知道是兩個陳述即可。 現在,考慮新的陳述:  "A if and only if B" 好了,現在主角登場,我們可以怎麼看待這個句子呢? 事實上我們可以很直覺的把這句子拆成兩部分看待,也就是 "( A if B ) and ( A only if B )" 那麼先針對第一個部分  A if B  來看, 其實這句就是說  if B then A, 更直白一點就是 "if B is true, then A is also true".  在數學上等價可以寫為 "B implies A" .  或者更常用一個箭頭符號來表示 "B $\Rightarrow$  A"  現在針對第二個部分  A only if B 此句意指  "If B is not true, then A is also not true". 所以如果已知 A is true,  那麼按照上句不難推得 B is also true 也就是說  A only if B  等價為 "If A is true then B is also true". 同樣,也可以寫作   "A implies B"   或者用箭頭表示  "A   $\Rightarrow$     B".

[數學分析] 淺談各種基本範數 (Norm)

這次要介紹的是數學上一個重要的概念: Norm: 一般翻譯成 範數 (在英語中 norm 有規範的意思,比如我們說normalization就是把某種東西/物品/事件 做 正規化,也就是加上規範使其正常化),不過個人認為其實翻譯成 範數 也是看不懂的...這邊建議把 Norm 想成長度就好 (事實上norm是長度的抽象推廣), 也許讀者會認為好端端的長度不用,為何又要發明一個 norm 來自討苦吃?? 既抽象又艱澀。 事實上想法是這樣的: 比如說現在想要比較兩個數字 $3$ , $5$ 之間的大小,則我們可以馬上知道 $ 3 < 5 $;同樣的,如果再考慮小數與無理數如 $1.8753$ 與 $\pi$,我們仍然可以比較大小 $1.8753 < \pi = 3.1415...$ 故可以發現我們有辦法對 "純量" 做明確的比大小,WHY? 因為前述例子中 $3$, $5$, $1.8753$ or $\pi$ 其各自的大小有辦法被 "measure "! 但是如果是現在考慮的是一組數字 我們如何去measure 其大小呢?? 比如說 \[x:=[1, -2, 0.1, 0 ]^T \]上式的大小該是多少? 是 $1$? $-2$? $0.1$??? 再者如果更過分一點,我們考慮一個矩陣 \[A = \left[ {\begin{array}{*{20}{c}} 1&2\\ 3&4 \end{array}} \right] \],想要知道這個矩陣的大小又該怎麼辦?? 是 $1$ ? $2$ 還是 $4$ ?..其實現階段我們說不清楚。 也正是如此,可以發現我們確實需要新的 "長度" 的定義來幫助我們如何去 measure 矩陣/向量/甚至是函數的大小。 故此,我們首先定義甚麼是Norm,(也就是把 "長度" or "大小" 的本質抽離出來) ================== Definition: Norm 考慮 $V$ 為一個向量空間(Vector space),則我們說  Norm 為一個函數 $||\cdot|| : V \rightarrow \mathbb{R}$ 且滿足下列性質