回憶在數學分析中我們定義了實數 sequence 的 limit 以及 函數 sequence 的 limt,那麼對於一組 集合 sequence 是否也能定義其極限?。 答案是肯定的。我們將仿照 實數 or 函數sequence 的 limit 來定義 集合 sequence 的極限 如下
令集合 $ A_n \subset \Omega$,我們定義
\[\mathop {\inf }\limits_{k \ge n} {A_k}: = \bigcap\limits_{k = n}^\infty {{A_k}} ;\begin{array}{*{20}{c}}
{}&{}
\end{array}\mathop {\sup }\limits_{k \ge n} {A_k}: = \bigcup\limits_{k = n}^\infty {{A_k}} ;
\] 有了上述定義後我們可以進一步定義 $\lim\inf$ 與 $\lim \sup$
\[\mathop {\lim \inf }\limits_{n \to \infty } {A_n} = \bigcup\limits_{n = 1}^\infty {\bigcap\limits_{k = n}^\infty {{A_k}} } ;\begin{array}{*{20}{c}}
{}&{}
\end{array}\mathop {\lim \sup }\limits_{n \to \infty } {A_n}: = \bigcap\limits_{n = 1}^\infty {\bigcup\limits_{k = n}^\infty {{A_k}} } ;
\] 有了$\lim\inf$ 與 $\lim \sup$,我們便可定義 集合 sequence 的 極限如下:
若存在一組集合 sequence $\{B_n\}$ 且 $B_n \subset \Omega, \; \forall n$ ,則我們說 $B_n$ 的極限存在若下列條件成立
\[\mathop {\lim \inf }\limits_{n \to \infty } {B_n} = \mathop {\lim \sup }\limits_{n \to \infty } {B_n} = B\]且 我們稱 $B$ 為 $B_n$ 的極限,並記做
\[
\lim_{n \rightarrow \infty} B_n = B\; \text{ or $B_n \rightarrow B$}
\]
以下我們看個例子確保我們確實了解上述定義
Example
試證
\[\mathop {\lim \sup }\limits_{n \to \infty } \left[ {0,\frac{n}{{n + 1}}} \right) = \mathop {\lim \inf }\limits_{n \to \infty } \left[ {0,\frac{n}{{n + 1}}} \right) = \left[ {0,1} \right)\]
Proof
首先觀察
\[\mathop {\lim \inf }\limits_{n \to \infty } \left[ {0,\frac{n}{{n + 1}}} \right) = \bigcup\limits_{n = 1}^\infty {\left( {\bigcap\limits_{k = n}^\infty {\left[ {0,\frac{k}{{k + 1}}} \right)} } \right)}
\]注意到
\[\bigcap\limits_{k = n}^\infty {\left[ {0,\frac{k}{{k + 1}}} \right)} = \left\{ \begin{array}{l}
k = 1:\bigcap\limits_{k = 1}^\infty {\left[ {0,\frac{k}{{k + 1}}} \right)} = \left[ {0,\frac{1}{2}} \right)\\
k = 2:\bigcup\limits_{k = 2}^\infty {\left[ {0,\frac{k}{{k + 1}}} \right)} = \left[ {0,\frac{2}{3}} \right)\\
...\\
k = n:\bigcup\limits_{k = n}^\infty {\left[ {0,\frac{k}{{k + 1}}} \right)} = \left[ {0,\frac{n}{{n + 1}}} \right)
\end{array} \right.
\] 故
\[ \Rightarrow \bigcup\limits_{n = 1}^\infty {\left( {\bigcap\limits_{k = n}^\infty {\left[ {0,\frac{k}{{k + 1}}} \right)} } \right) = \bigcup\limits_{n = 1}^\infty {\left[ {0,\frac{n}{{n + 1}}} \right) = \left[ {0,1} \right)} } \]接著觀察
\[\mathop {\lim \sup }\limits_{n \to \infty } \left[ {0,\frac{n}{{n + 1}}} \right) = \bigcap\limits_{n = 1}^\infty {\left( {\bigcup\limits_{k = n}^\infty {\left[ {0,\frac{k}{{k + 1}}} \right)} } \right)}
\]注意到
\[\bigcup\limits_{k = n}^\infty {\left[ {0,\frac{k}{{k + 1}}} \right)} = \left\{ \begin{array}{l}
k = 1:\bigcup\limits_{k = 1}^\infty {\left[ {0,\frac{k}{{k + 1}}} \right)} = \left[ {0,1} \right)\\
k = 2:\bigcup\limits_{k = 2}^\infty {\left[ {0,\frac{k}{{k + 1}}} \right)} = \left[ {0,1} \right)\\
...\\
k = n:\bigcup\limits_{k = n}^\infty {\left[ {0,\frac{k}{{k + 1}}} \right)} = \left[ {0,1} \right)
\end{array} \right.\]故可得
\[\bigcap\limits_{n = 1}^\infty {\left( {\bigcup\limits_{k = n}^\infty {\left[ {0,\frac{k}{{k + 1}}} \right)} } \right)} = \bigcap\limits_{n = 1}^\infty {\left[ {0,1} \right) = \left[ {0,1} \right)}
\]故兩者相等即為所求。$\square$
不過事實上我們可以將 集合的 sequence 的 $\lim \sup$ 與 Indicator function 連結起來。(關於 Indicator function 請參閱BLOG文章)
Lemma: The relationship between limsup and indicator function
令 $A_n \in \Omega$,我們讓 $\{ A_n \}$ 為 一組 集合 sequence。則
對於 $\lim \sup$ 我們有如下等價描述:
存在 subsequence $n_k$ 且 $n_k$ 與 $\omega$ 有關 使得
\[\begin{array}{l}
\mathop {\lim \sup }\limits_{n \to \infty } {A_n} = \left\{ {\omega \in \Omega :\sum\limits_{n = 1}^\infty {{1_{{A_n}}}\left( \omega \right) = \infty } } \right\}\\
\begin{array}{*{20}{c}}
{}&{}&{}&{}&{}
\end{array} = \left\{ {\omega \in \Omega :\omega \in {A_{{n_k}}},k = 1,2,3,...} \right\}
\end{array}
\]亦即我們可寫
\[\mathop {\lim \sup }\limits_{n \to \infty } {A_n} = \left\{ {{A_n}\begin{array}{*{20}{c}}
{}
\end{array}i.o.} \right\}\]其中 $i.o.$ 表 infinitely often.
Proof: omitted.
令集合 $ A_n \subset \Omega$,我們定義
\[\mathop {\inf }\limits_{k \ge n} {A_k}: = \bigcap\limits_{k = n}^\infty {{A_k}} ;\begin{array}{*{20}{c}}
{}&{}
\end{array}\mathop {\sup }\limits_{k \ge n} {A_k}: = \bigcup\limits_{k = n}^\infty {{A_k}} ;
\] 有了上述定義後我們可以進一步定義 $\lim\inf$ 與 $\lim \sup$
\[\mathop {\lim \inf }\limits_{n \to \infty } {A_n} = \bigcup\limits_{n = 1}^\infty {\bigcap\limits_{k = n}^\infty {{A_k}} } ;\begin{array}{*{20}{c}}
{}&{}
\end{array}\mathop {\lim \sup }\limits_{n \to \infty } {A_n}: = \bigcap\limits_{n = 1}^\infty {\bigcup\limits_{k = n}^\infty {{A_k}} } ;
\] 有了$\lim\inf$ 與 $\lim \sup$,我們便可定義 集合 sequence 的 極限如下:
若存在一組集合 sequence $\{B_n\}$ 且 $B_n \subset \Omega, \; \forall n$ ,則我們說 $B_n$ 的極限存在若下列條件成立
\[\mathop {\lim \inf }\limits_{n \to \infty } {B_n} = \mathop {\lim \sup }\limits_{n \to \infty } {B_n} = B\]且 我們稱 $B$ 為 $B_n$ 的極限,並記做
\[
\lim_{n \rightarrow \infty} B_n = B\; \text{ or $B_n \rightarrow B$}
\]
以下我們看個例子確保我們確實了解上述定義
Example
試證
\[\mathop {\lim \sup }\limits_{n \to \infty } \left[ {0,\frac{n}{{n + 1}}} \right) = \mathop {\lim \inf }\limits_{n \to \infty } \left[ {0,\frac{n}{{n + 1}}} \right) = \left[ {0,1} \right)\]
Proof
首先觀察
\[\mathop {\lim \inf }\limits_{n \to \infty } \left[ {0,\frac{n}{{n + 1}}} \right) = \bigcup\limits_{n = 1}^\infty {\left( {\bigcap\limits_{k = n}^\infty {\left[ {0,\frac{k}{{k + 1}}} \right)} } \right)}
\]注意到
\[\bigcap\limits_{k = n}^\infty {\left[ {0,\frac{k}{{k + 1}}} \right)} = \left\{ \begin{array}{l}
k = 1:\bigcap\limits_{k = 1}^\infty {\left[ {0,\frac{k}{{k + 1}}} \right)} = \left[ {0,\frac{1}{2}} \right)\\
k = 2:\bigcup\limits_{k = 2}^\infty {\left[ {0,\frac{k}{{k + 1}}} \right)} = \left[ {0,\frac{2}{3}} \right)\\
...\\
k = n:\bigcup\limits_{k = n}^\infty {\left[ {0,\frac{k}{{k + 1}}} \right)} = \left[ {0,\frac{n}{{n + 1}}} \right)
\end{array} \right.
\] 故
\[ \Rightarrow \bigcup\limits_{n = 1}^\infty {\left( {\bigcap\limits_{k = n}^\infty {\left[ {0,\frac{k}{{k + 1}}} \right)} } \right) = \bigcup\limits_{n = 1}^\infty {\left[ {0,\frac{n}{{n + 1}}} \right) = \left[ {0,1} \right)} } \]接著觀察
\[\mathop {\lim \sup }\limits_{n \to \infty } \left[ {0,\frac{n}{{n + 1}}} \right) = \bigcap\limits_{n = 1}^\infty {\left( {\bigcup\limits_{k = n}^\infty {\left[ {0,\frac{k}{{k + 1}}} \right)} } \right)}
\]注意到
\[\bigcup\limits_{k = n}^\infty {\left[ {0,\frac{k}{{k + 1}}} \right)} = \left\{ \begin{array}{l}
k = 1:\bigcup\limits_{k = 1}^\infty {\left[ {0,\frac{k}{{k + 1}}} \right)} = \left[ {0,1} \right)\\
k = 2:\bigcup\limits_{k = 2}^\infty {\left[ {0,\frac{k}{{k + 1}}} \right)} = \left[ {0,1} \right)\\
...\\
k = n:\bigcup\limits_{k = n}^\infty {\left[ {0,\frac{k}{{k + 1}}} \right)} = \left[ {0,1} \right)
\end{array} \right.\]故可得
\[\bigcap\limits_{n = 1}^\infty {\left( {\bigcup\limits_{k = n}^\infty {\left[ {0,\frac{k}{{k + 1}}} \right)} } \right)} = \bigcap\limits_{n = 1}^\infty {\left[ {0,1} \right) = \left[ {0,1} \right)}
\]故兩者相等即為所求。$\square$
不過事實上我們可以將 集合的 sequence 的 $\lim \sup$ 與 Indicator function 連結起來。(關於 Indicator function 請參閱BLOG文章)
Lemma: The relationship between limsup and indicator function
令 $A_n \in \Omega$,我們讓 $\{ A_n \}$ 為 一組 集合 sequence。則
對於 $\lim \sup$ 我們有如下等價描述:
存在 subsequence $n_k$ 且 $n_k$ 與 $\omega$ 有關 使得
\[\begin{array}{l}
\mathop {\lim \sup }\limits_{n \to \infty } {A_n} = \left\{ {\omega \in \Omega :\sum\limits_{n = 1}^\infty {{1_{{A_n}}}\left( \omega \right) = \infty } } \right\}\\
\begin{array}{*{20}{c}}
{}&{}&{}&{}&{}
\end{array} = \left\{ {\omega \in \Omega :\omega \in {A_{{n_k}}},k = 1,2,3,...} \right\}
\end{array}
\]亦即我們可寫
\[\mathop {\lim \sup }\limits_{n \to \infty } {A_n} = \left\{ {{A_n}\begin{array}{*{20}{c}}
{}
\end{array}i.o.} \right\}\]其中 $i.o.$ 表 infinitely often.
Proof: omitted.
留言
張貼留言