跳到主要內容

[機率論] 特性函數(1) - Properties

給定隨機變數 $X$,我們可以定義其對應的特性函數 (characteristic function) 如下: \[
\phi_X(t):= E [e^{itX}]
\]
Comment: 
1. 特性函數可視為 Fourier Transform。
2. 特性函數只與 $X$ 的 distribution 有關。
3. 特性函數滿足下列關係:$\phi(0)=1 $ 且
\[\left| {{\phi _X}(t)} \right| = \left| {E[{e^{itX}}]} \right| \le E\left[ {\left| {{e^{itX}}} \right|} \right] \le 1\]
4. 特性函數為 uniformly continuous on $\mathbb{R}$。亦即
對任意  $t \in \mathbb{R}$,我們有
\[\begin{array}{l}
\left| {\phi \left( {t + h} \right) - \phi \left( t \right)} \right| = \left| {E{e^{i\left( {t + h} \right)X}} - E{e^{i\left( t \right)X}}} \right|\\
\begin{array}{*{20}{c}}
{}&{}&{}&{}&{}&{}
\end{array} = \left| {E\left[ {{e^{i\left( t \right)X}}\left( {{e^{i\left( h \right)X}} - 1} \right)} \right]} \right|\\
\begin{array}{*{20}{c}}
{}&{}&{}&{}&{}&{}
\end{array} \le E\left[ {\left| {{e^{i\left( t \right)X}}\left( {{e^{i\left( h \right)X}} - 1} \right)} \right|} \right] \to 0 \;\;  \text{as  $\; h \downarrow 0$}
\end{array}\]上述極限成立因為 Dominated Convergence Theorem。
5. 若對任意 $t \in \mathbb{R}$ n-th moment 皆存在 則
\[{\phi _X}\left( t \right) = E{e^{itX}} = \sum\limits_{k = 0}^\infty  {\frac{{E\left[ {{{\left( {itX} \right)}^k}} \right]}}{{k!}}} \]
且若 $E|X|^n <\infty$ 我們亦可對其 Taylor Expansion around $t=0$ 亦即
\[{\phi _X}\left( t \right) = \sum\limits_{k = 0}^n {\frac{{E\left[ {{{\left( {itX} \right)}^k}} \right]}}{{k!}}}  + o\left( {{t^n}} \right)\]

Example: 若給定 隨機變數 $X,Y$ 且 $X,Y$ 彼此互為獨立,現在定義 $Z:=X+Y$,試求其 特性函數 $\phi_{Z}(t) =?$

由特性函數定義:
\[\begin{array}{l}
{\phi _Z}(t) = E\left[ {{e^{itZ}}} \right] = E\left[ {{e^{it\left( {X + Y} \right)}}} \right]\\
\begin{array}{*{20}{c}}
{}&{}&{}&{}
\end{array} = E\left[ {{e^{it\left( X \right)}}{e^{it\left( Y \right)}}} \right]
\end{array}\]由於 $X$ 與 $Y$ 互為獨立,故
\[{\phi _Z}(t) = E\left[ {{e^{it\left( X \right)}}{e^{it\left( Y \right)}}} \right] = E\left[ {{e^{it\left( X \right)}}} \right]E\left[ {{e^{it\left( Y \right)}}} \right] = {\phi _X}(t){\phi _Y}(t)\]

Example: 現在考慮 隨機變數 sequence $\{X_i\}$ 為 i.i.d. ,現在定義 $S_n:=X_1+X_2+...+X_n$,試求其 特性函數 $\phi_{S_n}(t) =?$
Solution
\[\begin{array}{l}
{\phi _{{S_n}}}(t) = E\left[ {{e^{it{S_n}}}} \right] = E\left[ {{e^{it\left( {{X_1} + {X_2} + ... + {X_n}} \right)}}} \right]\\
\begin{array}{*{20}{c}}
{}&{}&{}&{}
\end{array} = E\left[ {{e^{it\left( {{X_1} + {X_2} + ... + {X_n}} \right)}}} \right]

\end{array}\]由於 $\{X_i\}$ 為 i.i.d.,故其具有共同的 distribution,又 特性函數完全由 distribution 決定,故可知 $\phi_{X_1} = \phi_{X_2} = ... \phi_{X_n} := \phi$
\[{\phi _{{S_n}}}(t) = E\left[ {{e^{it\left( {{X_1} + {X_2} + ... + {X_n}} \right)}}} \right] = \prod\limits_{i = 1}^n {\underbrace {E\left[ {{e^{it\left( {{X_i}} \right)}}} \right]}_{ = \phi (t)}}  = {\left( {\phi (t)} \right)^n}\]

Example: 同上題,考慮 隨機變數 sequence $\{X_i\}$ 為 i.i.d. ,並定義 $S_n:=X_1+X_2+...+X_n$,試求其 特性函數 $\phi_{S_n/n}(t) =?$

Solution
\[\begin{array}{l}
{\phi _{{S_n}/n}}(t) = E\left[ {{e^{it\frac{{{S_n}}}{n}}}} \right] = E\left[ {{e^{it\left( {\frac{{{X_1} + {X_2} + ... + {X_n}}}{n}} \right)}}} \right]\\
\begin{array}{*{20}{c}}
{}&{}&{}&{}
\end{array} = E\left[ {{e^{i\frac{t}{n}\left( {{X_1} + {X_2} + ... + {X_n}} \right)}}} \right]
\end{array}\]由於 $\{X_i\}$ 為 i.i.d.,故其具有共同的 distribution,又 特性函數完全由 distribution 決定,故可知 $\phi_{X_1} = \phi_{X_2} = ... \phi_{X_n} := \phi$:
\[{\phi _{{S_n}/n}}(t) = E\left[ {{e^{i\frac{t}{n}\left( {{X_1} + {X_2} + ... + {X_n}} \right)}}} \right] = \prod\limits_{i = 1}^n {\underbrace {E\left[ {{e^{i\frac{t}{n}\left( {{X_i}} \right)}}} \right]}_{ = \phi (\frac{t}{n})}}  = {\left( {\phi (\frac{t}{n})} \right)^n}\]

FACT:
若 $E|X|^2 < \infty$,則 $\varphi(t) = 1 + it EX - t^2 \frac{E[(itX)^2]}{2}+o(t^2)$

Proof:
事實上,由 先前的 comment 5 可知
\[{\phi _X}\left( t \right) = 1 + itE\left[ X \right] - \frac{{{t^2}E\left[ {{X^2}} \right]}}{{2!}} + o\left( {{t^2}} \right) + H.O.T.\]但我們僅有假設 $E|X|^2 < \infty$ 故高階項不保證有界。

但所幸我們仍有以下不等式
\[E\left| {{e^{itX}} - \left( {1 + itE\left[ X \right] - \frac{{{t^2}E\left[ {{X^2}} \right]}}{{2!}}} \right)} \right| \le E\left[ {\min \left\{ {{{\left| {tX} \right|}^3},2{{\left| {tX} \right|}^2}} \right\}} \right]\]且我們可進一步確認其具有上界為
\[E\left| {{e^{itX}} - \left( {1 + itE\left[ X \right] - \frac{{{t^2}E\left[ {{X^2}} \right]}}{{2!}}} \right)} \right| \le E\left[ {\min \left\{ {{{\left| {tX} \right|}^3},2{{\left| {tX} \right|}^2}} \right\}} \right] \le E\left[ {{{\left| {tX} \right|}^2}} \right]\]故由 Dominated Convergence Theorem 可知
\[\begin{array}{l}
E\left| {{e^{itX}} - \left( {1 + itE\left[ X \right] - \frac{{{t^2}E\left[ {{X^2}} \right]}}{{2!}}} \right)} \right| \le E\left[ {\min \left\{ {{{\left| {tX} \right|}^3},2{{\left| {tX} \right|}^2}} \right\}} \right] \le E\left[ {{{\left| {tX} \right|}^2}} \right]\\
 \Rightarrow E\left| {{e^{itX}} - \left( {1 + itE\left[ X \right] - \frac{{{t^2}E\left[ {{X^2}} \right]}}{{2!}}} \right)} \right| \to 0
\end{array}\]

留言

這個網誌中的熱門文章

[數學分析] 什麼是若且唯若 "if and only if"

數學上的 if and only if  ( 此文不討論邏輯學中的 if and only if,只討論數學上的 if and only if。) 中文翻譯叫做  若且唯若 (or 當且僅當) , 記得當初剛接觸這個詞彙的時候,我是完全不明白到底是甚麼意思,查了翻譯也是愛莫能助,畢竟有翻跟沒翻一樣,都是有看沒有懂。 在數學上如果看到 if and only if  這類的句子,其實是表示一種 雙條件句 ,通常可以直接將其視為" 定義(Definition)" 待之,今天要分享的是這樣的一個句子如何用比較直觀的方法去看他 假設我們現在有 兩個邏輯陳述句 A 與  B. 注意到,在此我們不必考慮這兩個陳述句到底是什麼,想表達什麼,或者到底是否為真(true),這些都不重要。只要知道是兩個陳述即可。 現在,考慮新的陳述:  "A if and only if B" 好了,現在主角登場,我們可以怎麼看待這個句子呢? 事實上我們可以很直覺的把這句子拆成兩部分看待,也就是 "( A if B ) and ( A only if B )" 那麼先針對第一個部分  A if B  來看, 其實這句就是說  if B then A, 更直白一點就是 "if B is true, then A is also true".  在數學上等價可以寫為 "B implies A" .  或者更常用一個箭頭符號來表示 "B $\Rightarrow$  A"  現在針對第二個部分  A only if B 此句意指  "If B is not true, then A is also not true". 所以如果已知 A is true,  那麼按照上句不難推得 B is also true 也就是說  A only if B  等價為 "If A is true then B is also true". 同樣,也可以寫作   "A implies B"   或者用箭頭表示  "A   $\Rightarrow$     B".

[數學分析] 淺談各種基本範數 (Norm)

這次要介紹的是數學上一個重要的概念: Norm: 一般翻譯成 範數 (在英語中 norm 有規範的意思,比如我們說normalization就是把某種東西/物品/事件 做 正規化,也就是加上規範使其正常化),不過個人認為其實翻譯成 範數 也是看不懂的...這邊建議把 Norm 想成長度就好 (事實上norm是長度的抽象推廣), 也許讀者會認為好端端的長度不用,為何又要發明一個 norm 來自討苦吃?? 既抽象又艱澀。 事實上想法是這樣的: 比如說現在想要比較兩個數字 $3$ , $5$ 之間的大小,則我們可以馬上知道 $ 3 < 5 $;同樣的,如果再考慮小數與無理數如 $1.8753$ 與 $\pi$,我們仍然可以比較大小 $1.8753 < \pi = 3.1415...$ 故可以發現我們有辦法對 "純量" 做明確的比大小,WHY? 因為前述例子中 $3$, $5$, $1.8753$ or $\pi$ 其各自的大小有辦法被 "measure "! 但是如果是現在考慮的是一組數字 我們如何去measure 其大小呢?? 比如說 \[x:=[1, -2, 0.1, 0 ]^T \]上式的大小該是多少? 是 $1$? $-2$? $0.1$??? 再者如果更過分一點,我們考慮一個矩陣 \[A = \left[ {\begin{array}{*{20}{c}} 1&2\\ 3&4 \end{array}} \right] \],想要知道這個矩陣的大小又該怎麼辦?? 是 $1$ ? $2$ 還是 $4$ ?..其實現階段我們說不清楚。 也正是如此,可以發現我們確實需要新的 "長度" 的定義來幫助我們如何去 measure 矩陣/向量/甚至是函數的大小。 故此,我們首先定義甚麼是Norm,(也就是把 "長度" or "大小" 的本質抽離出來) ================== Definition: Norm 考慮 $V$ 為一個向量空間(Vector space),則我們說  Norm 為一個函數 $||\cdot|| : V \rightarrow \mathbb{R}$ 且滿足下列性質