跳到主要內容

[系統理論] 連續時間週期訊號的 Fourier Series Representation (1) - Periodic signal represents by linear combination of complex exponentials

在系統理論中,週期訊號是非常重要的一類訊號,我們將在這篇文章介紹 對於週期訊號的頻域處理: Fourier Series Representation。本質上想法就是企圖將 週期訊號 透過 Complex exponentials 展開 (或者等價 用 sin 與 cos 展開)。

Comment:
1. 上述句子提及的展開 表示 週期訊號 可以透過 complex exponential 透過線性組合 建構。
2. 儘管 Fourier Series 對"大部分" 週期訊號 (e.g., 連續週期訊號)都成立。但若欲擴展到 "任意" 週期訊號的 Fourier Series Representation 須加上額外條件保證 Fourier Sereis 收斂,此部分會在後續文章再做討論。
3. 注意到若訊號為 "非週期"訊號,則 Fourier Series 不能使用,需引入 Fourier Transform!! 關於 Fourier Transform 的議題我們會在之後再做討論。 (基本想法仍不變,只是將非週期訊號 "看成" 週期訊號 但週期為無窮大)


======================
Definition: (Continuous Time Periodic Signal)
我們稱一個訊號 $x(t)$ 為週期訊號 (periodic signal) 若下列條件成立:
對任意時間 $t>0$ 存在一正實數 $T >0$,使得
\[
x(t) = x(t + T)
\]======================
下圖為連續時間的週期訊號的一個例子

我們稱 $T_0$ 為 週期訊號 $x(t)$ 的基本週期(fundamental period) 若下列條件滿足:
取最小週期 $T_0 = T>0$ 使得 $x(t) = x(t+T)$仍然成立。

由基本週期的定義,我們可透過 $\omega = \frac{2 \pi}{T}$ 定義 基本頻率 (fundamental frequency, $\omega_0$)
\[
\omega_0 := \frac{2 \pi}{T_0}
\] Example
考慮
\[x\left( t \right) = 1 + \sin {\omega _0}t + 2\cos {\omega _0}t + \cos \left( {2{\omega _0}t + \frac{\pi }{4}} \right)
\]則上述訊號 為週期訊號 (或者週期訊號的線性組合),且 fundamental frequency 為 $\omega_0$。

下面是一些常見的 週期訊號 :
-----------
Example
1. $x(t) = \cos \omega_0 t$
2.  $x(t) = e^{j \omega_0 t}$
-----------

Proof:
給定 $t>0$,
1. 先證 $\cos \omega_0 t$ 為週期訊號,亦即要證明 存在一個 $T >0$ 使得
\[
\cos(\omega_0 (t + T)) = \cos( \omega_0 (t))
\]現在令 $T := \frac{2\pi}{ |\omega_0|} >0$,則
\[\begin{array}{*{20}{l}}
{\cos ({\omega _0}(t + T)) = \cos ({\omega _0}(t + \frac{{2\pi }}{{\left| {{\omega _0}} \right|}}))}\\
{\begin{array}{*{20}{c}}
{}&{}&{}&{}&{}&{}
\end{array} = \cos ({\omega _0}t \pm 2\pi ) = \cos ({\omega _0}t)}
\end{array}\]亦即 $\cos \omega_0 t$ 確實為週期訊號。

2. 我們接著證 $e^{ j \omega_0 t}$ 為週期訊號,亦即要證明 存在一個 $T >0$ 使得
\[
e^{j\omega_0 (t + T)} = e^{j\omega_0 t}
\]同樣取 $T := \frac{2\pi}{ |\omega_0|} >0$,則
\[\begin{array}{l}
{e^{j{\omega _0}(t + T)}} = {e^{j{\omega _0}\left( {t + \frac{{2\pi }}{{\left| {{\omega _0}} \right|}}} \right)}}\\
\begin{array}{*{20}{c}}
{}&{}&{}&{}
\end{array} = {e^{j({\omega _0}t \pm 2\pi )}} = \cos ({\omega _0}t \pm 2\pi ) + jsin\left( {{\omega _0}t \pm 2\pi } \right)\\
\begin{array}{*{20}{c}}
{}&{}&{}&{}
\end{array} = \cos ({\omega _0}t) + jsin\left( {{\omega _0}t} \right)\\
\begin{array}{*{20}{c}}
{}&{}&{}&{}
\end{array} = {e^{j({\omega _0}t)}}
\end{array}\]亦即 $e^{j\omega_0 t} $ 確實為週期訊號。$\square$。


現在我們考慮訊號為 Complex exponentials,亦即
\[
x(t) = e^{j \omega_0 t}
\]其對應的 fundamental frequency 為 $\omega_0$ 。

現在我們定義一組與諧波相關(harmonically related)的 complex exponentials  如下
\[
\phi_k(t) := e^{j k \omega_0 t}
\]上述 $\phi_k(t)$ 仍為週期訊號且 fundamental frequency 仍為 $\omega_0$,現在若我們把週期訊號 透過 線性組合疊加 寫成下列無窮級數形式:
\[
x\left( t \right): = \sum\limits_{k =  - \infty }^\infty  {{a_k}{\phi _k}\left( t \right)}  = \sum\limits_{k =  - \infty }^\infty  {{a_k}{e^{jk{\omega _0}t}}} \ \  \ \ (*)
\]則我們說上述訊號 $x(t)$ 仍為 一個週期為 $T$ 的訊號。

NOTE: 上述的無窮級數形式稱為週期訊號 $x(t)$ Fourier Series Representation。亦即,給定係數 $a_k$,我們便可以透過 complex exponentials 的線性組合 來建構週期訊號 $x(t)$。

Comments:
對於
\[
x\left( t \right): = \sum\limits_{k =  - \infty }^\infty  {{a_k}{e^{jk{\omega _0}t}}} \ \  \ \ (*)
\]
注意到 $k=0$時,上式 $(*)$為常數。
\[x\left( t \right): = {\left. {\sum\limits_{k =  - \infty }^\infty  {{a_k}{e^{jk{\omega _0}t}}} } \right|_{k = 0}} = {a_0}
\]若 $k= \pm 1$時,此時 $(*)$ 可寫為
\[x\left( t \right): = {\left. {\sum\limits_{k =  - \infty }^\infty  {{a_k}{e^{jk{\omega _0}t}}} } \right|_{k =  \pm 1}} = {a_1}{e^{j{\omega _0}t}} + {a_{ - 1}}{e^{ - j{\omega _0}t}}
\]上式仍為 週期函數且 fundamental freqeuncy 為 $\omega_0$,我們稱為 1次諧波分量 (first harmonic compoenents)
同理,若 $k = \pm2$時,我們亦可得到週期函數,且 fundamental frequency 為 $2 \omega_0$,稱為 2次諧波分量 (second harmonic componenents),以此類推,若 $k= \pm N$時,我們透過 $(*)$仍得到的週期函數,且 fundamental frequency 為 $N \omega_0$ 稱為 N次諧波分量。

我們現在看個例子:
考慮週期訊號 $x(t)$ 具有 fundamental frequency $2 \pi$ 表為
\[x\left( t \right) = \sum\limits_{k =  - 3}^3 {{a_k}{e^{jk2\pi t}}}
\]其中 $a_0 =1, \; a_1 = a_{-1} = 1/4$, $a_2 = a_{-2}=1/2$, $a_3 = a_{-3} = 1/3$。試求原本 $x(t) = ?$
Solution:
將給定係數 $a_k, k= -3,-2,-1,0,1,2,3$帶入上式,我們可得
\[{\small
\begin{array}{l}
x\left( t \right) = \sum\limits_{k =  - 3}^3 {{a_k}{e^{jk2\pi t}}} \\
\begin{array}{*{20}{c}}
{}&{}&{}
\end{array} = {a_0} + {a_1}{e^{j2\pi t}} + {a_{ - 1}}{e^{ - j2\pi t}} + {a_2}{e^{j4\pi t}} + {a_{ - 2}}{e^{ - j4\pi t}} + {a_3}{e^{j6\pi t}} + {a_{ - 3}}{e^{ - j6\pi t}}\\
\begin{array}{*{20}{c}}
{}&{}&{}
\end{array} = 1 + \frac{1}{4}\left( {{e^{j2\pi t}} + {e^{ - j2\pi t}}} \right) + \frac{1}{2}\left( {{e^{j4\pi t}} + {e^{ - j4\pi t}}} \right) + \frac{1}{3}\left( {{e^{j6\pi t}} + {e^{ - j6\pi t}}} \right)\\
\begin{array}{*{20}{c}}
{}&{}&{}
\end{array} = 1 + \frac{1}{2}\left( {\frac{{{e^{j2\pi t}} + {e^{ - j2\pi t}}}}{2}} \right) + \frac{1}{1}\left( {\frac{{{e^{j4\pi t}} + {e^{ - j4\pi t}}}}{2}} \right) + \frac{2}{3}\left( {\frac{{{e^{j6\pi t}} + {e^{ - j6\pi t}}}}{2}} \right)\\
\begin{array}{*{20}{c}}
{}&{}&{}
\end{array} = 1 + \frac{1}{2}\left( {\cos 2\pi t} \right) + \frac{1}{1}\left( {\cos 4\pi t} \right) + \frac{2}{3}\left( {\cos 6\pi t} \right) \square
\end{array}
}\]

現在如果反過來,如果給定週期訊號 $x(t)$,如何反求 Fourier Series Represetnation 的係數 $a_k$ ? 我們將留待下一篇文章在做介紹。

ref: A.V. Oppenheim, A. S. Willsky, S. H. Nawab, Signals and Systems

留言


  1. You miss a " j " in harmonically related complex exponential signals.

    回覆刪除
    回覆
    1. Thanks for pointing this out. I have fixed the typo.

      刪除

張貼留言

這個網誌中的熱門文章

[數學分析] 什麼是若且唯若 "if and only if"

數學上的 if and only if  ( 此文不討論邏輯學中的 if and only if,只討論數學上的 if and only if。) 中文翻譯叫做  若且唯若 (or 當且僅當) , 記得當初剛接觸這個詞彙的時候,我是完全不明白到底是甚麼意思,查了翻譯也是愛莫能助,畢竟有翻跟沒翻一樣,都是有看沒有懂。 在數學上如果看到 if and only if  這類的句子,其實是表示一種 雙條件句 ,通常可以直接將其視為" 定義(Definition)" 待之,今天要分享的是這樣的一個句子如何用比較直觀的方法去看他 假設我們現在有 兩個邏輯陳述句 A 與  B. 注意到,在此我們不必考慮這兩個陳述句到底是什麼,想表達什麼,或者到底是否為真(true),這些都不重要。只要知道是兩個陳述即可。 現在,考慮新的陳述:  "A if and only if B" 好了,現在主角登場,我們可以怎麼看待這個句子呢? 事實上我們可以很直覺的把這句子拆成兩部分看待,也就是 "( A if B ) and ( A only if B )" 那麼先針對第一個部分  A if B  來看, 其實這句就是說  if B then A, 更直白一點就是 "if B is true, then A is also true".  在數學上等價可以寫為 "B implies A" .  或者更常用一個箭頭符號來表示 "B $\Rightarrow$  A"  現在針對第二個部分  A only if B 此句意指  "If B is not true, then A is also not true". 所以如果已知 A is true,  那麼按照上句不難推得 B is also true 也就是說  A only if B  等價為 "If A is true then B is also true". 同樣,也可以寫作   "A implies B"   或者用箭頭表示  "A   $\Rightarrow$     B".

[數學分析] 淺談各種基本範數 (Norm)

這次要介紹的是數學上一個重要的概念: Norm: 一般翻譯成 範數 (在英語中 norm 有規範的意思,比如我們說normalization就是把某種東西/物品/事件 做 正規化,也就是加上規範使其正常化),不過個人認為其實翻譯成 範數 也是看不懂的...這邊建議把 Norm 想成長度就好 (事實上norm是長度的抽象推廣), 也許讀者會認為好端端的長度不用,為何又要發明一個 norm 來自討苦吃?? 既抽象又艱澀。 事實上想法是這樣的: 比如說現在想要比較兩個數字 $3$ , $5$ 之間的大小,則我們可以馬上知道 $ 3 < 5 $;同樣的,如果再考慮小數與無理數如 $1.8753$ 與 $\pi$,我們仍然可以比較大小 $1.8753 < \pi = 3.1415...$ 故可以發現我們有辦法對 "純量" 做明確的比大小,WHY? 因為前述例子中 $3$, $5$, $1.8753$ or $\pi$ 其各自的大小有辦法被 "measure "! 但是如果是現在考慮的是一組數字 我們如何去measure 其大小呢?? 比如說 \[x:=[1, -2, 0.1, 0 ]^T \]上式的大小該是多少? 是 $1$? $-2$? $0.1$??? 再者如果更過分一點,我們考慮一個矩陣 \[A = \left[ {\begin{array}{*{20}{c}} 1&2\\ 3&4 \end{array}} \right] \],想要知道這個矩陣的大小又該怎麼辦?? 是 $1$ ? $2$ 還是 $4$ ?..其實現階段我們說不清楚。 也正是如此,可以發現我們確實需要新的 "長度" 的定義來幫助我們如何去 measure 矩陣/向量/甚至是函數的大小。 故此,我們首先定義甚麼是Norm,(也就是把 "長度" or "大小" 的本質抽離出來) ================== Definition: Norm 考慮 $V$ 為一個向量空間(Vector space),則我們說  Norm 為一個函數 $||\cdot|| : V \rightarrow \mathbb{R}$ 且滿足下列性質