何時能把 多變數函數 $f(x,y)=0$ 中的變數 用另一個變數表示 e.g., $x$ 用 $y$ 表示。
考慮 $f$ 為 雙變數函數 且 $f \in C^1$,則函數 $f$ 在 點 $(a,b)$ 滿足
\[
f(a,b) = 0,\;\; \frac{\partial f}{\partial y}(a,b) \neq 0
\]則在 $(a,b)$ 附近的鄰域之內,我們可求解方程式 $f(x,y) =0$ 並將 $y$ 用 $x$ 表示。
同理,若在 \[
f(a,b) = 0,\;\; \frac{\partial f}{\partial x}(a,b) \neq 0
\]則我們就可在 $(a,b)$ 附近的鄰域之內,我們可求解方程式 $f(x,y) =0$ 中的 $x$ 用 $y$ 表示。
Example
考慮 $f(x,y) := x^2 + y^2 -1$ 。
Q1: 求解 $f(x,y)=0$ 在 $(x,y)=(a,b) = (1/\sqrt{2}, 1/\sqrt{2})$處,問是否其解 $x$ 可用 $y$ 表示 or 將解 $y$ 用 $x$ 表示?
Q2: 求解 $f(x,y)=0$ 在 $(x,y)=(a,b) = (1, 0)$處,問是否其解 $x$ 可用 $y$ 表示 or 將解 $y$ 用 $x$ 表示?
Proof:
考慮 $(a,b)= (1/\sqrt{2}, 1/\sqrt{2})$ 且觀察
\[\left\{ \begin{array}{l}
\frac{{\partial f}}{{\partial y}}\left( {a,b} \right) = {\left. {2y} \right|_{\left( {a,b} \right)}} = 2b = \frac{1}{{\sqrt 2 }} \ne 0\\
\frac{{\partial f}}{{\partial x}}\left( {a,b} \right) = {\left. {2x} \right|_{\left( {a,b} \right)}} = 2a = \frac{1}{{\sqrt 2 }} \ne 0
\end{array} \right.\]故在 $(a,b)= (1/\sqrt{2}, 1/\sqrt{2})$ 附近我們求解 \[f(x,y) = 0 \Rightarrow {x^2} + {y^2} - 1 = 0\]可將 $x$ 用 $y$ 表示;亦可將 $y$ 用 $x$ 表示:
\[\left\{ \begin{array}{l}
x = \pm \sqrt {1 - {y^2}} \\
y = \pm \sqrt {1 - {x^2}}
\end{array} \right.\]
Q2: 考慮 $(a,b)=(1,0)$ 則
\[\left\{ \begin{array}{l}
\frac{{\partial f}}{{\partial y}}\left( {a,b} \right) = {\left. {2y} \right|_{\left( {a,b} \right)}} = 0\\
\frac{{\partial f}}{{\partial x}}\left( {a,b} \right) = {\left. {2x} \right|_{\left( {a,b} \right)}} = 2a = 2 \ne 0
\end{array} \right.\]故上述表示我們可以將 $x$ 用 $y$ 表示,但 $y$ 未知是否可用 $x$ 表示 (no conclusion)。$\square$
Implicit Function Theorem 便是要試圖回答上述問題 (回答何時可將解用其他變數表示!)。現在我們首先將上述結果推廣到 $\mathbb{R}^n$ ,在此之前我們需先定義一些需要的符號:
若 $\bf x$ $:=(x_1,...,x_n) \in \mathbb{R}^n$ 且 $\bf y $ $:= (y_1,...,y_m) \in \mathbb{R}^m$,令
\[{\bf{z}}: = \left( {{\bf{x}},{\bf{y}}} \right): = \left( {{x_1},...,{x_n},{y_1},...,{y_m}} \right) \in {\mathbb{R}^{m + n}}
\]考慮任意 Linear transformation $A:= L(\mathbb{R}^{n+m}, \mathbb{R}^n)$ ,我們可將 $A$ 拆成兩個 Linear transformation $A_x \in L(\mathbb{R}^n,\mathbb{R}^n )$ 與 $A_y \in L(\mathbb{R}^m, \mathbb{R}^n)$ 如下:
對任意 $\bf h$ $\in \mathbb{R}^n$ 與 $\bf k$ $\in \mathbb{R}^m$,
\[\left\{ \begin{array}{l}
{A_x}{\bf{h}}: = A\left( {{\bf{h}},{\bf{0}}} \right)\\
{A_y}{\bf{k}}: = A\left( {{\bf{0}},{\bf{k}}} \right)
\end{array} \right.\]且 $A\left( {{\bf{h}},{\bf{k}}} \right): = {A_x}{\bf{h}} + {A_y}{\bf{k}}$
現在我們可以寫下 Linear Version 的 隱函數定理:
==============
Theorem 1: 若 $A \in L(\mathbb{R}^{m+n}, \mathbb{R}^n)$ 且若 $A_x$ 為 invertible 則 存在 唯一 $\bf h$ $\in \mathbb{R}^n$ 使得 對任意 $\bf k$ $\in \mathbb{R}^m$,$A({\bf h,k}) = \bf 0$
且 此解 $\bf h$ 可用 $\bf k$ 表示如下
\[{\bf{h}} = - {\left( {{A_x}} \right)^{ - 1}}{A_y}{\bf{k}}
\]==============
我們要證明 存在唯一 $\bf h$ $\in \mathbb{R}^n$ 使得 對任意 $\bf k$ $\in \mathbb{R}^m$,$A({\bf h,k}) = \bf 0$
由 $A \in L(\mathbb{R}^{m+n}, \mathbb{R}^n)$ 可知
\[A\left( {{\bf{h}},{\bf{k}}} \right): = {A_x}{\bf{h}} + {A_y}{\bf{k}} \ \ \ \ (*)
\]故若 $A_x$ 為 invertible (i.e., $A_x ^{-1}$ 存在) ,則我們對 $(*)$ 求解 $\bf h$
\[\begin{array}{l} {A_x}{\bf{h}} + {A_y}{\bf{k}} = {\bf{0}}\\ \Leftrightarrow {A_x}{\bf{h}} = - {A_y}{\bf{k}}\\ \Leftrightarrow {\bf{h}} = - {\left( {{A_x}} \right)^{ - 1}}{A_y}{\bf{k}} \ \ \ \ \square \end{array}\]
現在我們可以給出 Implicit Function Theorem:
==============
Theorem: Implicit Function Theorem
令 $\bf f$ 為 $C^1$ 映射從 open set $E \subset \mathbb{R}^{n+m}$ 映到 $\mathbb{R}^n$,且存在點 $({\bf a,b}) \in E$ 使得 ${\bf{f}}\left( {{\bf{a}},{\bf{b}}} \right) = {\bf{0}}$。令 $A:= {\bf{f}}'\left( {{\bf{a}},{\bf{b}}} \right)$ 且假設 $A_x$ 為 invertible。則
存在 兩個 open sets $U \subset \mathbb{R}^{n+m}$ 與 $W \subset \mathbb{R}^m$ 使得點 $({\bf a,b}) \in U$ 與 $\bf b$ $\in W$ 滿足下列條件:
1. 對任意 $\bf y$ $\in W$,存在唯一 $\bf x$ 使得 \[\left( {{\bf{x}},{\bf{y}}} \right) \in U,\begin{array}{*{20}{c}}
{}&{}
\end{array}{\bf{f}}\left( {{\bf{x}},{\bf{y}}} \right) = {\bf{0}}
\]2. 若此 $\bf x$ $:= {{\bf g}({\bf y})}$ 則 $\bf g$$:W \to \mathbb{R}^n$ 為 $C^1$ 映射 ,且 ${\bf{g}}\left( {\bf{b}} \right) = {\bf{a}}$ 且 對任意 $\bf y$ $\in W$ ,${\bf{f}}\left( {{\bf{g}}\left( {\bf{y}} \right),{\bf{y}}} \right) = {\bf{0}}$另外
\[{\bf{g}}'\left( {\bf{b}} \right) = - {\left( {{A_x}} \right)^{ - 1}}{A_y}
\]==============
1. 函數 $g$ 被隱密的定義在 ${\bf{f}}\left( {{\bf{g}}\left( {\bf{y}} \right),{\bf{y}}} \right) = {\bf{0}}$ 且 $\bf x$ 被表示成 $g({\bf y})$。且 $\bf f(a,b) =0$ 表示 $\bf (a,b)$ 為 $\bf f$ 的解。
2. 上述定理提及的 ${\bf{f}}\left( {{\bf{x}},{\bf{y}}} \right) = {\bf{0}}$ 可表示成 $n+m$ 個變數,且 $n$ 個方程式:
\[{\bf{f}}\left( {{\bf{x}},{\bf{y}}} \right) = {\bf{0}} \Leftrightarrow \left\{ \begin{array}{l}
{f_1}\left( {{x_1},...,{x_n},{y_1},...,{y_m}} \right) = 0\\
{f_2}\left( {{x_1},...,{x_n},{y_1},...,{y_m}} \right) = 0\\
\begin{array}{*{20}{c}}
{}
\end{array} \vdots \\
{f_n}\left( {{x_1},...,{x_n},{y_1},...,{y_m}} \right) = 0
\end{array} \right.\]且 定理中所提及的 $A_x$ 為 invertible 意指下列矩陣
\[{\left[ {\begin{array}{*{20}{c}}
{{D_1}{f_1}\left( {{\bf{a}},{\bf{b}}} \right)}& \cdots &{{D_n}{f_1}\left( {{\bf{a}},{\bf{b}}} \right)}\\
\vdots & \ddots & \vdots \\
{{D_1}{f_n}\left( {{\bf{a}},{\bf{b}}} \right)}& \cdots &{{D_n}{f_n}\left( {{\bf{a}},{\bf{b}}} \right)}
\end{array}} \right]_{n \times n}}\]在點 $({\bf a,b})$ 處為 invertible linear operator in $\mathbb{R}^n$;換言之,上述矩陣在 $({\bf a,b})$ 處之 determinatnt 不為零。Theorem 1 只是考慮上述的 $f_1,...,f_n$ 為線性的情況。
3. 由於 $n+m$ 個未知變數,有 $n$ 個方程式,不需要 Implicit Function Theorem 我們應該也可知道在此情況下方程式的解有額外的 $m$ 個自由度。故基本上此定理想要知道是否可將手邊的變數用其他變數表示,更進一步的說,如果考慮上述 \[{\bf{f}}\left( {{\bf{x}},{\bf{y}}} \right) = {\bf{0}} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}
{{f_1}\left( {{x_1},...,{x_n},{y_1},...,{y_m}} \right) = 0}\\
{{f_2}\left( {{x_1},...,{x_n},{y_1},...,{y_m}} \right) = 0}\\
{\begin{array}{*{20}{c}}
{}
\end{array} \vdots }\\
{{f_n}\left( {{x_1},...,{x_n},{y_1},...,{y_m}} \right) = 0}
\end{array}} \right.\]且現在給定 $y_1,...,y_m$,則情況變成 $n$ 個未知數與 $n $ 個方程式,我們想問是否有 "唯一" 解。那麼問題變成 when 有唯一解?? 回憶線性代數,我們知道必須要有 invertibability 幫忙。
4. 由於 ${\bf f}({\bf a, b}) = \bf 0$,其對應的導數 $D \bf f$ 可寫成
\[D{\bf{f}} = \left[ {\begin{array}{*{20}{c}}
{\underbrace {{D_{\bf{x}}}{\bf{f}}}_{n \times n}}&{\underbrace {{D_{\bf{y}}}{\bf{f}}}_{n \times m}}
\end{array}} \right]\]且 Implicit Function Theorem 單純指出若 $D_{\bf x} {\bf f}({\bf a, b}) $ 為 invertible,則 (在 $(\bf a,b)$ 附近鄰域) ${\bf x}$ 可寫成 $\bf y$ 的函數
Proof: Implicit Function Theorem
我們首先證明 存在 兩個 open sets $U \in \mathbb{R}^{n+m}$ 與 $W \subset \mathbb{R}^m$ 使得點 $({\bf a,b}) \in U$ 且 $\bf b$ $\in W$ 且第一個條件滿足:
給定任意 $\bf y$ $\in W$, 存在唯一 $\bf x$ 使得 \[\left( {{\bf{x}},{\bf{y}}} \right) \in U,\begin{array}{*{20}{c}}
{}&{}
\end{array}{\bf{f}}\left( {{\bf{x}},{\bf{y}}} \right) = {\bf{0}}
\]證明唯一性之前我們先證明 存在性。
首先定義新的函數 $\bf F$ 如下:對任意 $\left( {{\bf{x}},{\bf{y}}} \right) \in E$,
\[{\bf{F}}\left( {{\bf{x}},{\bf{y}}} \right): = \left( {{\bf{f}}\left( {{\bf{x}},{\bf{y}}} \right),{\bf{y}}} \right)\]則 $\bf F$ 為 $C^1$ 映射從 $E$ 映到 $\mathbb{R}^{n+m}$。
Claim: ${\bf{F}}'\left( {{\bf{a}},{\bf{b}}} \right)$ 為 invertible element of $L(\mathbb{R}^{n+m})$
Proof:
要證明 ${\bf{F}}'\left( {{\bf{a}},{\bf{b}}} \right)$ 為 invertible element of $L(\mathbb{R}^{n+m})$,由於在 有限維度空間,我們只需證明 $\bf f$ 為 1-1。
由於 ${\bf{f}}\left( {{\bf{a}},{\bf{b}}} \right) = {\bf{0}}$,觀察
\[{\bf{f}}\left( {{\bf{a}} + {\bf{h}},{\bf{b}} + {\bf{k}}} \right) - {\bf{f}}\left( {{\bf{a}},{\bf{b}}} \right) = {\bf{f}}\left( {{\bf{a}} + {\bf{h}},{\bf{b}} + {\bf{k}}} \right)\]由 $\bf f'$ 定義可知
\[\begin{array}{l}
\mathop {\lim }\limits_{{\bf{h}} \to 0} \frac{{\left\| {{\bf{f}}\left( {{\bf{a}} + {\bf{h}},{\bf{b}} + {\bf{k}}} \right) - {\bf{f}}\left( {{\bf{a}},{\bf{b}}} \right) + A\left( {{\bf{h}},{\bf{k}}} \right)} \right\|}}{{\left\| {\bf{h}} \right\|}} = 0\\
\Leftrightarrow {\bf{f}}\left( {{\bf{a}} + {\bf{h}},{\bf{b}} + {\bf{k}}} \right) - {\bf{f}}\left( {{\bf{a}},{\bf{b}}} \right) = A\left( {{\bf{h}},{\bf{k}}} \right) + {\bf{r}}\left( {{\bf{h}},{\bf{k}}} \right)
\end{array}\]其中 $\bf r$ 表示 remainder。
由前述計算,我們可以接著檢驗 $\bf F'$;首先觀察
\[\begin{array}{l}
{\bf{F}}\left( {{\bf{a}} + {\bf{h}},{\bf{b}} + {\bf{k}}} \right) - {\bf{F}}\left( {{\bf{a}},{\bf{b}}} \right) = \left( {{\bf{f}}\left( {{\bf{a}} + {\bf{h}},{\bf{b}} + {\bf{k}}} \right),{\bf{b}} + {\bf{k}}} \right) - \left( {{\bf{f}}\left( {{\bf{a}},{\bf{b}}} \right),{\bf{b}}} \right)\\
\begin{array}{*{20}{c}}
{}&{}&{}&{}&{}&{}&{}&{}
\end{array} = \left( {{\bf{f}}\left( {{\bf{a}} + {\bf{h}},{\bf{b}} + {\bf{k}}} \right) - {\bf{f}}\left( {{\bf{a}},{\bf{b}}} \right),{\bf{k}}} \right)\\
\begin{array}{*{20}{c}}
{}&{}&{}&{}&{}&{}&{}&{}
\end{array} = \left( {A\left( {{\bf{h}},{\bf{k}}} \right) + {\bf{r}}\left( {{\bf{h}},{\bf{k}}} \right),{\bf{k}}} \right)\\
\begin{array}{*{20}{c}}
{}&{}&{}&{}&{}&{}&{}&{}
\end{array} = \left( {A\left( {{\bf{h}},{\bf{k}}} \right),{\bf{k}}} \right) + \left( {{\bf{r}}\left( {{\bf{h}},{\bf{k}}} \right),{\bf{0}}} \right)
\end{array}\]上式表示 ${\bf{F}}'\left( {{\bf{a}},{\bf{b}}} \right)$ 為 linear operator on $\mathbb{R}^{n+m} $且將 $(\bf h,k)$ 映射到 $\left( {A\left( {{\bf{h}},{\bf{k}}} \right),{\bf{k}}} \right)$。
注意到若 ${\bf{F}}'\left( {{\bf{a}},{\bf{b}}} \right)=0$ 則 \[A\left( {{\bf{h}},{\bf{k}}} \right) = {\bf{0}},{\bf{k}} = {\bf{0}}\]因此 $A\left( {{\bf{h}},{\bf{0}}} \right) = {\bf{0}}$。由先前的 Theorem 1 可知 $\bf h = 0$,故 ${\bf{F}}'\left( {{\bf{a}},{\bf{b}}} \right)$ 為 1-1 (因為 $A\left( {{\bf{h}},{\bf{k}}} \right) = {\bf{0}}$ only if $\bf h,k =0$);因此 為 invertible。$\square$-Claim。
由於 $\bf F$ 為 $C^1$ 且 ${\bf{F}}'\left( {{\bf{a}},{\bf{b}}} \right)$ invertible,故由 Inverse Function Theorem 可知
存在 opens sets $U, V \subset \mathbb{R}^{n+m}$ 且 $\left( {{\bf{a}},{\bf{b}}} \right) \in U$ ,$\left( {{\bf{0}},{\bf{b}}} \right) \in V$ 使得 $\bf F$ 為 1-1 映射從 $U \to V$。
令 $W: = \left\{ {{\bf{y}} \in {\mathbb{R}^m}:\left( {{\bf{0}},{\bf{y}}} \right) \in V} \right\}$。則由於 $\left( {{\bf{0}},{\bf{b}}} \right) \in V$ 故 $\left( {{\bf{0}},{\bf{b}}} \right) \in W$。且由於 $V$ 為 open 故 $W$ 必為 open。
若 $\bf y$ $\in W$,則存在 $(\bf x,y)$ $\in U$ 使得 \[\left( {{\bf{0}},{\bf{y}}} \right) = {\bf{F}}\left( {{\bf{x}},{\bf{y}}} \right)\]且此 $\bf x$ 滿足
\[\begin{array}{l}
\left( {{\bf{0}},{\bf{y}}} \right) = {\bf{F}}\left( {{\bf{x}},{\bf{y}}} \right)\\
\Rightarrow \left( {{\bf{0}},{\bf{y}}} \right) = \left( {{\bf{f}}\left( {{\bf{x}},{\bf{y}}} \right),{\bf{y}}} \right)\\
\Rightarrow {\bf{f}}\left( {{\bf{x}},{\bf{y}}} \right) = {\bf{0}}
\end{array}\]
現在我們證此 $\bf x$ 為唯一! :考慮 同個 $\bf y$ 但另一個 ${{\bf{\bar x}}}$ 滿足 $\left( {{\bf{\bar x}},{\bf{y}}} \right) \in U$ 使得 \[{\bf{f}}\left( {{\bf{\bar x}},{\bf{y}}} \right) = {\bf{0}}\]現在觀察
\[{\bf{F}}'\left( {{\bf{\bar x}},{\bf{y}}} \right) = \left( {{\bf{f}}\left( {{\bf{\bar x}},{\bf{y}}} \right),{\bf{y}}} \right) = \left( {{\bf{0}},{\bf{y}}} \right) = \left( {{\bf{f}}\left( {{\bf{x}},{\bf{y}}} \right),{\bf{y}}} \right) = {\bf{F}}\left( {{\bf{x}},{\bf{y}}} \right)\]由於$\bf F$ 為 1-1故 ${\bf{x}} = {\bf{\bar x}}$
接著我們證明第二個結果成立;亦即
若此 $\bf x$ $:= {{\bf g}({\bf y})}$ 則 $\bf g$$:W \to \mathbb{R}^n$ 為 $C^1$ 映射 ,且 ${\bf{g}}\left( {\bf{b}} \right) = {\bf{a}}$ 且 對任意 $\bf y$ $\in W$ ,${\bf{f}}\left( {{\bf{g}}\left( {\bf{y}} \right),{\bf{y}}} \right) = {\bf{0}}$ 另外 ${\bf{g}}'\left( {\bf{b}} \right) = - {\left( {{A_x}} \right)^{ - 1}}{A_y}$
故 我們定義 ${{\bf g}({\bf y})}$ 對任意 $\bf y$ $\in W$ 使得 $\left( {{\bf{g}}\left( {\bf{y}} \right),{\bf{y}}} \right) \in U$ 且 ${\bf{f}}\left( {{\bf{g}}\left( {\bf{y}} \right),{\bf{y}}} \right) = {\bf{0}}$ 則
\[{\bf{F}}\left( {{\bf{g}}\left( {\bf{y}} \right),{\bf{y}}} \right) = \left( {{\bf{f}}\left( {{\bf{g}}\left( {\bf{y}} \right),{\bf{y}}} \right),{\bf{y}}} \right) = \left( {{\bf{0}},{\bf{y}}} \right)\]若 $\bf G$ 為映射從 $V$ onto $U$ 且 $\bf G$ 為 $\bf F$ 的 inverse,則 Inverse Function Theorem 可知 $\bf G$ 為 $C^1$。且由於
\[\begin{array}{l}
{\bf{F}}\left( {{\bf{g}}\left( {\bf{y}} \right),{\bf{y}}} \right) = \left( {{\bf{0}},{\bf{y}}} \right)\\
\Rightarrow \left( {{\bf{g}}\left( {\bf{y}} \right),{\bf{y}}} \right) = {{\bf{F}}^{ - 1}}\left( {{\bf{0}},{\bf{y}}} \right) = {\bf{G}}\left( {{\bf{0}},{\bf{y}}} \right)\\
\Rightarrow \left( {{\bf{g}}\left( {\bf{y}} \right),{\bf{y}}} \right) = {\bf{G}}\left( {{\bf{0}},{\bf{y}}} \right)
\end{array}\]由於 $\bf G$ $\in C^1$ 故 $\bf g$$\in C^1$。
最後,我們證明 ${\bf{g}}'\left( {\bf{b}} \right) = - {\left( {A_x^{}} \right)^{ - 1}}A_y^{}$ 。令
\[{\bf{\Phi }}\left( {\bf{y}} \right): = \left( {{\bf{g}}\left( {\bf{y}} \right),{\bf{y}}} \right)\]則對任意 $\bf y$ $\in W$ 與 $\bf k$ $\in \mathbb{R}^m$ 我們有
\[{\bf{\Phi }}'\left( {\bf{y}} \right){\bf{k}} = \left( {{\bf{g}}'\left( {\bf{y}} \right){\bf{k}},{\bf{k}}} \right)\]由於
\[{\bf{f}}\left( {{\bf{g}}\left( {\bf{y}} \right),{\bf{y}}} \right) = {\bf{0}} \Rightarrow {\bf{f}}\left( {{\bf{\Phi }}\left( {\bf{y}} \right)} \right) = {\bf{0}}\]利用 Chain Rule 可知
\[{\bf{f}}'\left( {{\bf{\Phi }}\left( {\bf{y}} \right)} \right){\bf{\Phi }}'\left( {\bf{y}} \right) = 0 \ \ \ \ (\star)
\]當 $\bf y = b$ 則
\[{\bf{\Phi }}\left( {\bf{y}} \right): = \left( {{\bf{g}}\left( {\bf{y}} \right),{\bf{y}}} \right) \Rightarrow {\bf{\Phi }}\left( {\bf{b}} \right) = \left( {{\bf{g}}\left( {\bf{b}} \right),{\bf{b}}} \right) = \left( {{\bf{a}},{\bf{b}}} \right)\]且 ${\bf{f}}'\left( {{\bf{\Phi }}\left( {\bf{b}} \right)} \right) = {\bf{f}}'\left( {{\bf{a}},{\bf{b}}} \right) = A$。因此 $(\star)$ 式變成
\[\begin{array}{l}
{{\bf{f}}^\prime }\left( {{\bf{\Phi }}\left( {\bf{y}} \right)} \right){{\bf{\Phi }}^\prime }\left( {\bf{y}} \right) = 0\\
\Rightarrow {{\bf{f}}^\prime }\left( {{\bf{\Phi }}\left( {\bf{b}} \right)} \right){{\bf{\Phi }}^\prime }\left( {\bf{b}} \right) = 0\\
\Rightarrow {{\bf{f}}^\prime }\left( {{\bf{a}},{\bf{b}}} \right){{\bf{\Phi }}^\prime }\left( {\bf{b}} \right) = 0\\
\Rightarrow A{{\bf{\Phi }}^\prime }\left( {\bf{b}} \right) = 0
\end{array}\]現在回憶 $A\left( {{\bf{h}},{\bf{k}}} \right): = {A_x}{\bf{h}} + {A_y}{\bf{k}}$;故此若我們觀察:對任意 $\bf k$ $\in \mathbb{R}^m$
\[\begin{array}{l}
A{{\bf{\Phi }}^\prime }\left( {\bf{b}} \right) = 0\\
\Rightarrow A{{\bf{\Phi }}^\prime }\left( {\bf{b}} \right){\bf{k}} = {\bf{0}}\\
\Rightarrow A\left( {{{\bf{g}}^\prime }\left( {\bf{b}} \right){\bf{k}},{\bf{k}}} \right) = {\bf{0}}\\
\Rightarrow {A_x}{{\bf{g}}^\prime }\left( {\bf{b}} \right){\bf{k}} + {A_y}{\bf{k}} = {\bf{0}}
\end{array}\]因此我們有
\[\begin{array}{l}
{A_x}{{\bf{g}}^\prime }\left( {\bf{b}} \right){\bf{k}} + {A_y}{\bf{k}} = {\bf{0}}\\
\Rightarrow {A_x}{{\bf{g}}^\prime }\left( {\bf{b}} \right) + {A_y} = 0\\
\Rightarrow {{\bf{g}}^\prime }\left( {\bf{b}} \right) = - {\left( {{A_x}} \right)^{ - 1}}{A_y}
\end{array}\]至此證明完畢。
現在看個例子:
Example: Application of Implicit Function Theorem
取 $n =2, m=3$ 且考慮 ${\bf{f}}: = \left( {{f_1},{f_2}} \right):{\mathbb{R}^5} \to {\mathbb{R}^2}$ 滿足
\[\left\{ \begin{array}{l}
{f_1}\left( {{x_1},{x_2},{y_1},{y_2},{y_3}} \right): = 2{e^{{x_1}}} + {x_2}{y_1} - 4{y_2} + 3\\
{f_2}\left( {{x_1},{x_2},{y_1},{y_2},{y_3}} \right): = {x_2}\cos {x_1} - 6{x_1} + 2{y_1} - {y_3}
\end{array} \right.\]若 $\bf a$$:=(0,1)$ 與 $\bf b$ $:=(3,2,7)$,則我們有 \[{\bf{f}}\left( {{\bf{a}},{\bf{b}}} \right) = \left\{ \begin{array}{l}
{f_1}\left( {0,1,3,2,7} \right): = 2 + 3 - 4 \cdot 2 + 3 = 0\\
{f_2}\left( {0,1,3,2,7} \right): = 1 \cdot 1 - 0 + 2 \cdot 3 - 7 = 0
\end{array} \right. \Rightarrow {\bf{f}}\left( {{\bf{a}},{\bf{b}}} \right) = {\bf{0}}\]現在若我們考慮 standard basis ,則 Linear transformation $A:={\bf{f}}'\left( {{\bf{a}},{\bf{b}}} \right)$ 可表示成如下矩陣
\[\begin{array}{l}
A: = {\bf{f}}'\left( {{\bf{a}},{\bf{b}}} \right) = {\left[ {\begin{array}{*{20}{c}}
{2{e^{{x_1}}}}&{{y_1}}&{{x_2}}&{ - 4}&0\\
{ - {x_2}\sin {x_1} - 6}&{\cos {x_1}}&2&0&{ - 1}
\end{array}} \right]_{\left( {{\bf{x}},{\bf{y}}} \right) = \left( {{\bf{a}},{\bf{b}}} \right)}}\\
\begin{array}{*{20}{c}}
{}&{}&{}&{}&{}&{}
\end{array} = \left[ {\begin{array}{*{20}{c}}
2&3&1&{ - 4}&0\\
{ - 6}&1&2&0&{ - 1}
\end{array}} \right]
\end{array}\]其中
\[{A_x}: = \left[ {\begin{array}{*{20}{c}}
2&3\\
{ - 6}&1
\end{array}} \right];{A_y}: = \left[ {\begin{array}{*{20}{c}}
1&{ - 4}&0\\
2&0&{ - 1}
\end{array}} \right];\]
為了要使用 Implicit Function Theorem, 我們需要 $A_x$ 為 invertible。 (如果是! 則 Implicit Function Theorem 告訴我們在 $(\bf a,b)$ 附近可以把 $\bf x$ 用 $\bf y$ 表示):故現在檢驗 $\det A_x$:
\[\det {A_x} = \det \left[ {\begin{array}{*{20}{c}}
2&3\\
{ - 6}&1
\end{array}} \right] = 20 \ne 0\]此顯示了 $A_x$ 為 invertible
Implicit Function Theorem 告訴我們存在 兩個 open sets $U \in \mathbb{R}^{2+3}$ 與 $W \subset \mathbb{R}^3$ ,使得 點 $({\bf a,b}) = (0,1,3,2,7) \in U$ 且 $\bf b$ $=(3,2,7)$ $\in W$ 且下列條件滿足:
1. 對任意 $\bf y$ $\in W$,存在唯一 $\bf x$ 使得 \[\left( {{\bf{x}},{\bf{y}}} \right) \in U,\begin{array}{*{20}{c}}
{}&{}
\end{array}{\bf{f}}\left( {{\bf{x}},{\bf{y}}} \right) = {\bf{0}}
\]2. 若此 $\bf x$ $:= {{\bf g}({\bf y})}$ 則 $\bf g$$:W \to \mathbb{R}^n$ 為 $C^1$ 映射 ,且 ${\bf{g}}\left( {\bf{b}} \right) = {\bf{a}} \Rightarrow {\bf{g}}\left( {3,2,7} \right) = \left( {0,1} \right)$ 且對任意 $\bf y$ $\in W$ ,${\bf{f}}\left( {{\bf{g}}\left( {\bf{y}} \right),{\bf{y}}} \right) = {\bf{0}}$另外
\[{\bf{g}}'\left( {\bf{b}} \right) = - {\left( {{A_x}} \right)^{ - 1}}{A_y}
\]
簡言之,implicit function theorem 告訴我們存在 $C^1$ 映射函數 $\bf g$ 在 $\bf b$ $=(3,2,7)$ 鄰域有定義並且使得 ${\bf{g}}\left( {3,2,7} \right) = \left( {0,1} \right)$ 與 ${\bf{f}}\left( {{\bf{g}}\left( {\bf{y}} \right),{\bf{y}}} \right) = {\bf{0}}$且\[{\bf{g}}'\left( {\bf{b}} \right) = - {\left( {{A_x}} \right)^{ - 1}}{A_y}
\]故我們可計算 上式
\[\begin{array}{l}
{{\bf{g}}^\prime }\left( {\bf{b}} \right) = - {\left( {{A_x}} \right)^{ - 1}}{A_y}\\
\begin{array}{*{20}{c}}
{}&{}&{}
\end{array} = - {\left[ {\begin{array}{*{20}{c}}
2&3\\
{ - 6}&1
\end{array}} \right]^{ - 1}}\left[ {\begin{array}{*{20}{c}}
1&{ - 4}&0\\
2&0&{ - 1}
\end{array}} \right]\\
\begin{array}{*{20}{c}}
{}&{}&{}
\end{array} = - \frac{1}{{20}}\left[ {\begin{array}{*{20}{c}}
1&{ - 3}\\
6&2
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
1&{ - 4}&0\\
2&0&{ - 1}
\end{array}} \right]\\
\begin{array}{*{20}{c}}
{}&{}&{}
\end{array} = - \frac{1}{{20}}\left[ {\begin{array}{*{20}{c}}
{ - 5}&{ - 4}&3\\
{10}&{ - 24}&{ - 2}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{\frac{1}{4}}&{\frac{1}{5}}&{ - \frac{3}{{20}}}\\
{ - \frac{1}{2}}&{\frac{3}{5}}&{\frac{1}{{10}}}
\end{array}} \right]
\end{array}\]上式可寫成在點 $(3,2,7)$ 偏導數
\[\begin{array}{l}
{D_1}{g_1} = \frac{1}{4},{D_2}{g_1} = \frac{1}{5},{D_3}{g_1} = - \frac{3}{{20}}\\
{D_1}{g_2} = - \frac{1}{2},{D_2}{g_2} = \frac{3}{5},{D_3}{g_2} = \frac{1}{{10}}
\end{array}\]
Example 2
考慮下列系統
\[\left\{ \begin{array}{l}
xu + y{v^2} = 0\\
x{v^3} + {y^2}{u^6} = 0
\end{array} \right.\]Q1 試問對於點 $(x,y,u,v) := (0,1,0,0)$ 附近鄰域而言,是否可將 $(x,y)$ 用 $(u,v)$ 表示?
Q2 試問對於點 $(x,y,u,v) := (1,-1,1,-1)$ 附近鄰域而言,是否可將 $(x,y)$ 用 $(u,v)$ 表示?
Solution 1:
定義 ${\bf{f}}: = \left( {{f_1},{f_2}} \right)$ 且
\[\left\{ {\begin{array}{*{20}{l}}
{{f_1}\left( {x,y,u,v} \right): = xu + y{v^2} = 0}\\
{{f_2}\left( {x,y,u,v} \right): = x{v^3} + {y^2}{u^6} = 0}
\end{array}} \right.\]要回答上述問題須借助 Implicit Function Theorem,首先注意到
\[\left\{ \begin{array}{l}
{\bf{f}}\left( {0,1,0,0} \right) = {\bf{0}}\\
{\bf{f}}\left( {1, - 1,1, - 1} \right) = {\bf{0}}
\end{array} \right.\]故若要使用 Implicit Function Theorem,我們需要檢驗
\[\begin{array}{l}
{\bf{f}}: = \left( {{f_1},{f_2}} \right)\\
\Rightarrow {\bf{f}}'\left( {x,y,u,v} \right) = \left[ {\begin{array}{*{20}{c}}
u&{{v^2}}&x&{2yv}\\
{{v^3}}&{2y{u^6}}&{6{y^2}{u^5}}&{3x{v^2}}
\end{array}} \right]
\end{array}\]對於 $(x,y,u,v) := (0,1,0,0)$ 而言,可知
\[{\bf{f}}'\left( {0,1,0,0} \right) = \left[ {\begin{array}{*{20}{c}}
0&0&0&0\\
0&0&0&0
\end{array}} \right]\]此為 non-invertible。故 implicit function theorem 無法使用。 (注意到在此我們不可說 因為 $A_x$ non-invertible 故 $(x,y)$ 無法用 $(u,v)$ 表示!! 我們僅能說 implicit function theorem 無法使用,所以無法獲得任何結論。)
另一方面,對於點$(x,y,u,v) := (1,-1,1,-1)$ 而言,檢驗
\[{\bf{f}}'\left( {1, - 1,1, - 1} \right) = \left[ {\begin{array}{*{20}{c}}
1&1&1&2\\
{ - 1}&{ - 2}&6&3
\end{array}} \right]\]故若我們需要將 $(x,y)$ 用 $(u,v)$ 表示,則我們需要檢驗 $A_x$ 矩陣是否為 invertible 亦即去檢驗其 determinant 如下
\[{A_x} = \left[ {\begin{array}{*{20}{c}}
1&1\\
{ - 1}&{ - 2}
\end{array}} \right] \Rightarrow \det {A_x} = - 2 + 1 = - 1 \ne 0\]故 $A_x$ 為 invertible。也就是說可以 將 $(x,y)$ 用 $(u,v)$ 表示。
注意!! 讀者可自行檢驗在 $(x,y,u,v) := (1,-1,1,-1)$ 附近鄰域,$(u,v)$ 亦可表示成為 $(x,y)$的函數(why? 因為 $\det \left[ {\begin{array}{*{20}{c}}
1&2\\
6&3
\end{array}} \right] = - 9 \ne 0$)
ref: W. Rudin, "Principle of Mathematical Analysis", 3rd
沒有留言:
張貼留言