跳到主要內容

[分享] 聖靈感動、方言與積極態度的討論

此文為個人回覆會友對於 "聖靈感動、方言與積極態度" 等等 的討論
以及個人一些看法
===================
Question:
認識一些人他們聚會說那聖靈充滿,然後一些人會有許多倒地失控的狀態,或者強調導告要說方言才算聖靈充滿,對這些我一直在腦中打問號,可是如果當我們說一些不完全支持的言論,感覺這些人就防衛了起來,然後認為是我們不懂⋯這是否合聖經教導呢?
---------------------
ANS:
我要強調一點,因為聖靈在我捫心中動工,也許當下自然而然有感動流淚,這當然很好。

但這絕對不代表 沒有感動流淚 就是聖靈沒動工,就是聖靈不同在。
更 不代表沒有說方言、沒有跟著倒下、沒有翻滾、沒有呼天喊地 就是聖靈不同在

--------------------------------
額外關於方言與聖靈的解說:

要知道聖經對這方面是非常保留的。使徒保羅曾說:要說方言可以,旁邊的人要能"解"方言,如果不能解,不過就是一堆奇怪的嗓音鬼扯+自high罷了..
.
林前12:10 又叫一人能行異能,又叫一人能作先知,又叫一人能辨別諸靈,又叫一人能說方言,又叫一人能翻方言。

林前12:28 神在教會所設立的:第一是使徒,第二是先知,第三是教師,其次是行異能的,再次是得恩賜醫病的,幫助人的,治理事的,說方言的。

林前12:30 豈都是得恩賜醫病的嗎?豈都是說方言的嗎豈都是翻方言的嗎

又說

林前14:13 所以那說方言的,就當求著能""出來。
.
林前14:19 但在教會中,寧可用悟性說五句教導人的話,強如說萬句方言。

----------------------------
以下關於積極不積極的討論
.
我反對成功神學 但我支持應該要有積極態度
差別在哪? 差別在於 成功神學認為你只要信了耶穌就能解決所有問題 直接轉職昇天(到底在信什麼都搞不清楚? ..)

但我所謂的積極態度是指,在面對各種挑戰/苦難/疾病/貧乏 也能繼續勇敢面對的態度!這是本分問題。我們本來就要努力過每一個日子。因為聖經很明白的寫了

提前4:10 我們勞苦努力,正是為此,因我們的指望在乎永生的神;他是萬人的救主,更是信徒的救主
.
太11:12 從施洗約翰的時候到如今,天國是努力進入的,努力的人就得著了。
.
願神幫助我們

留言

這個網誌中的熱門文章

[數學分析] 什麼是若且唯若 "if and only if"

數學上的 if and only if  ( 此文不討論邏輯學中的 if and only if,只討論數學上的 if and only if。) 中文翻譯叫做  若且唯若 (or 當且僅當) , 記得當初剛接觸這個詞彙的時候,我是完全不明白到底是甚麼意思,查了翻譯也是愛莫能助,畢竟有翻跟沒翻一樣,都是有看沒有懂。 在數學上如果看到 if and only if  這類的句子,其實是表示一種 雙條件句 ,通常可以直接將其視為" 定義(Definition)" 待之,今天要分享的是這樣的一個句子如何用比較直觀的方法去看他 假設我們現在有 兩個邏輯陳述句 A 與  B. 注意到,在此我們不必考慮這兩個陳述句到底是什麼,想表達什麼,或者到底是否為真(true),這些都不重要。只要知道是兩個陳述即可。 現在,考慮新的陳述:  "A if and only if B" 好了,現在主角登場,我們可以怎麼看待這個句子呢? 事實上我們可以很直覺的把這句子拆成兩部分看待,也就是 "( A if B ) and ( A only if B )" 那麼先針對第一個部分  A if B  來看, 其實這句就是說  if B then A, 更直白一點就是 "if B is true, then A is also true".  在數學上等價可以寫為 "B implies A" .  或者更常用一個箭頭符號來表示 "B $\Rightarrow$  A"  現在針對第二個部分  A only if B 此句意指  "If B is not true, then A is also not true". 所以如果已知 A is true,  那麼按照上句不難推得 B is also true 也就是說  A only if B  等價為 "If A is true then B is also true". 同樣,也可以寫作   "A implies B"   或者用箭頭表示  "A   $\Rightarrow$     B".

[數學分析] 淺談各種基本範數 (Norm)

這次要介紹的是數學上一個重要的概念: Norm: 一般翻譯成 範數 (在英語中 norm 有規範的意思,比如我們說normalization就是把某種東西/物品/事件 做 正規化,也就是加上規範使其正常化),不過個人認為其實翻譯成 範數 也是看不懂的...這邊建議把 Norm 想成長度就好 (事實上norm是長度的抽象推廣), 也許讀者會認為好端端的長度不用,為何又要發明一個 norm 來自討苦吃?? 既抽象又艱澀。 事實上想法是這樣的: 比如說現在想要比較兩個數字 $3$ , $5$ 之間的大小,則我們可以馬上知道 $ 3 < 5 $;同樣的,如果再考慮小數與無理數如 $1.8753$ 與 $\pi$,我們仍然可以比較大小 $1.8753 < \pi = 3.1415...$ 故可以發現我們有辦法對 "純量" 做明確的比大小,WHY? 因為前述例子中 $3$, $5$, $1.8753$ or $\pi$ 其各自的大小有辦法被 "measure "! 但是如果是現在考慮的是一組數字 我們如何去measure 其大小呢?? 比如說 \[x:=[1, -2, 0.1, 0 ]^T \]上式的大小該是多少? 是 $1$? $-2$? $0.1$??? 再者如果更過分一點,我們考慮一個矩陣 \[A = \left[ {\begin{array}{*{20}{c}} 1&2\\ 3&4 \end{array}} \right] \],想要知道這個矩陣的大小又該怎麼辦?? 是 $1$ ? $2$ 還是 $4$ ?..其實現階段我們說不清楚。 也正是如此,可以發現我們確實需要新的 "長度" 的定義來幫助我們如何去 measure 矩陣/向量/甚至是函數的大小。 故此,我們首先定義甚麼是Norm,(也就是把 "長度" or "大小" 的本質抽離出來) ================== Definition: Norm 考慮 $V$ 為一個向量空間(Vector space),則我們說  Norm 為一個函數 $||\cdot|| : V \rightarrow \mathbb{R}$ 且滿足下列性質