跳到主要內容

[隨機過程] 隨機過程淺淺談(II) - 波松過程 Poisson process

這是要介紹的是 波松過程 (Poisson Process),他其實就是我們之前介紹的 計數過程(Counting process) 的一種 (詳見 隨機過程淺淺談(I) - 計數過程Counting process)

那麼我們先把定義給出

===========================
Definition: (Standard Poisson Process)
我們把一個計數過程 $\{ N_t, t \geq 0 \}$ 稱做 波松過程 如果下列三個條件滿足:
  1. $N_0=0$ (with probability 1),也就是說 $N_0$ 是一個常數 $0$ 隨機變數
  2. 對任意有限時間點 $0 \leq s < t < \infty $,其計數增量(increment) $N_t- N_s$ 是一個 波松 隨機變數 (Possion random variable) 伴隨 參數為 $\lambda (t-s)$;也就是說其 機率質量函數:\[ P(N_t-N_s=k) = \frac{[\lambda(t-s)]^k e^{- \lambda (t-s)}}{k!}, k=0,1,2...\]且計數增量的期望值 $\mathbb{E}[N_t-N_s]=\lambda(t-s)$ 其 變異數為 $var(N_t-N_s)=\lambda(t-s)$上式中的 $\lambda$ 代表 波松過程的 發生率(rate) 或者 強度(intensity)
  3. 如果考慮時間區間 $(t_1,t_2], (t_2,t_3],...(t_n,t_{n+1}]$ 為分離(disjoint)的區間,則其對應的增量
    $N_{t_2} - N_{t_1}$ , $N_{t_3}-N_{t_2}$,...$N_{t_{n+1}} - N_{t_n}$ 全為獨立(independent)。也就是說 波松過程 具備 獨立增量(independent increment),也就是在分離時間區間中的發生次數互為獨立
===========================

下圖顯示了 one sample path of Poisson process (jump time $S_1, S_2,...$)


===========================
FACT: Mean and Variance of Poisson Increment
令 $0 \le s < t$ 試證 $E[N_t - N_s] = \lambda (t-s)$
===========================

Proof:
注意到由於給定 $s,t$ 故 $N_t - N_s$ 可視為隨機變數,由期望值定義出發,\[\begin{array}{l}
E[{N_t} - {N_s}] = \sum\limits_{k = 0}^\infty  {kP\left( {{N_t} - {N_s} = k} \right)} \\
\begin{array}{*{20}{c}}
{}&{}&{}&{}
\end{array} = \sum\limits_{k = 0}^\infty  {k\frac{{{{[\lambda (t - s)]}^k}{e^{ - \lambda (t - s)}}}}{{k!}}} \\
\begin{array}{*{20}{c}}
{}&{}&{}&{}
\end{array} = \lambda (t - s){e^{ - \lambda (t - s)}}\underbrace {\sum\limits_{k = 1}^\infty  {\frac{{{\lambda ^{k - 1}}{{(t - s)}^{k - 1}}}}{{\left( {k - 1} \right)!}}} }_{ = {e^{\lambda (t - s)}}}\\
\begin{array}{*{20}{c}}
{}&{}&{}&{}
\end{array} = \lambda (t - s){e^{ - \lambda (t - s)}}{e^{\lambda (t - s)}} = \lambda (t - s)
\end{array}\]上式最後第 3 個等號利用下面的 FACT
\[{e^x} = \sum\limits_{k = 0}^\infty  {\frac{{{x^k}}}{{k!}}}  = \sum\limits_{k = 1}^\infty  {\frac{{{x^{k - 1}}}}{{\left( {k - 1} \right)!}}} \]


===========================
FACT: Second Moment of Poisson Increment
令 $0 \le s < t$,$E[(N_t - N_s)^2] = \lambda^2 (t-s)^2 + \lambda (t-s)$
且 $Var(N_t- N_s) = \lambda (t-s)$
===========================

Proof: omitted.


===========================
FACT: Martingale Property for Compensated Poisson Process
令 $N_t$ 為 Poisson process with intensity $\lambda$, 定義 compensated Poisson process $M_t := N_t - \lambda t$ 則 $M_t$ 為 Martingale
===========================

Proof (sketch):
在此只檢驗 Martingale 性質 (i.e., 要證 $E[{M_t}|{F_s}] = {M_s}$),其餘性質留給讀者檢驗:
注意到 $N_t - N_s$ 與 $F_s$ 獨立 且 $E[N_t - N_s] = \lambda (t-s)$,故觀察
\[\begin{array}{l}
E[{M_t}|{F_s}] = E[{N_t} - \lambda t|{F_s}]\\
\begin{array}{*{20}{c}}
{}&{}&{}&{}
\end{array} = E[{N_t}|{F_s}] - \lambda t\\
\begin{array}{*{20}{c}}
{}&{}&{}&{}
\end{array} = E[\left( {{N_t} - {N_s}} \right) + \left( {{N_s} - {N_0}} \right)|{F_s}] - \lambda t\\
\begin{array}{*{20}{c}}
{}&{}&{}&{}
\end{array} = E[\left( {{N_t} - {N_s}} \right)|{F_s}] + E[\left( {{N_s} - {N_0}} \right)|{F_s}] - \lambda t\\
\begin{array}{*{20}{c}}
{}&{}&{}&{}
\end{array} = E[\left( {{N_t} - {N_s}} \right)] + {N_s} - \lambda t\\
\begin{array}{*{20}{c}}
{}&{}&{}&{}
\end{array} = \lambda \left( {t - s} \right) + {N_s} - \lambda t = {N_s} - \lambda s = {M_s}
\end{array}\]


Example 1
對任意 $t>0$,試計算 $E \left[C^{N_t}\right]$,其中 $C>0$ 為固定常數 且 $\{N_t\}$ 為 standard Poisson process

Proof:
固定 $t>0$ 注意到 $N_t$ 為隨機變數,不再是 隨機過程 ;故利用期望值定義,$$\begin{array}{l}
E[{C^{{N_t}}}] = \sum\limits_{k = 0}^\infty  {{C^k}P\left( {{N_t} = k} \right)}  = \sum\limits_{k = 0}^\infty  {{C^k}{e^{ - \lambda t}}\frac{{{{\left( {\lambda t} \right)}^k}}}{{k!}}} \\
\begin{array}{*{20}{c}}
{}&{}&{}
\end{array} = {e^{ - \lambda t}}\sum\limits_{k = 0}^\infty  {\frac{{{{\left( {C\lambda t} \right)}^k}}}{{k!}}}  = {e^{ - \lambda t}}{e^{C\lambda t}} = {e^{\left( {C - 1} \right)\lambda t}}
\end{array}$$


Example 2
現考慮一個光感測器,其光電子(photoelectrons)服從波松過程,且每分鐘以速率 $\lambda$ 從光感測器射出。現在試問 在對任意 兩個連續分鐘間隔,有超過5個光電子被射出的機率是多少?

Sol
第一步先把文字轉為數學機率問題
令 $N_t$ 表在時間 $t$ 時,光電子被射出的個數 (此 $N_t$為 Random Variable)

現在考慮 兩個 連續分鐘時間間隔分別為 $t_0$ ~ $t_1$, $t_1$ ~ $t_2$,
則 在任意兩個連續分鐘時間間隔 有超過五個光電子被射出的機率可寫成
$P(\{N_{t_1}-N_{t_2} >5\} \cap \{N_{t_2 }- N_{t_1} >5\})$

接著,由於其服從波松過程,故可知 時間間隔為獨立 且 $N_t - N_s$ 為波松隨機變數,故上式改寫為
\[
P(\{N_{t_1}-N_{t_2} >5\})P(\{N_{t_2} - N_{t_1} >5\}) \]
其中 \[\begin{array}{l}
P(\{ {N_{{t_1}}} - {N_{{t_2}}} > 5\} ) = 1 - P(\{ {N_{{t_1}}} - {N_{{t_2}}} \le 5\} )\\
\begin{array}{*{20}{c}}
{}&{}&{}&{}&{}&{}&{}&{}&{}
\end{array} = 1 - \sum\limits_{i = 0}^5 {\frac{{{{[\lambda ({t_2} - {t_1})]}^k}{e^{ - \lambda ({t_2} - {t_1})}}}}{{k!}}} \\
\begin{array}{*{20}{c}}
{}&{}&{}&{}&{}&{}&{}&{}&{}
\end{array} = 1 - \sum\limits_{i = 0}^5 {\frac{{{{[\lambda  \times 1]}^k}{e^{ - \lambda  \times 1}}}}{{k!}}}
\end{array}\]最後一行等式成立是因為間隔一分鐘,所以 $N_t - N_s =1$ 最後將兩個機率寫出來,可知
$$P(\{N_{t_1}-N_{t_2} >5\} \cap \{N_{t_2} - N_{t_1 }>5\})=\left( 1-\sum_{i=0}^{5}\frac{[\lambda]^k e^{- \lambda}}{k!} \right)^2$$

====
[數學] 隨機過程淺淺談(0)-先備概念
[數學] 隨機過程淺淺談(I) - 計數過程Counting process
[數學] 隨機過程淺淺談(III) - 布朗運動 or 維納過程 (Brownian motion or Wiener Process)

留言

這個網誌中的熱門文章

[數學分析] 什麼是若且唯若 "if and only if"

數學上的 if and only if  ( 此文不討論邏輯學中的 if and only if,只討論數學上的 if and only if。) 中文翻譯叫做  若且唯若 (or 當且僅當) , 記得當初剛接觸這個詞彙的時候,我是完全不明白到底是甚麼意思,查了翻譯也是愛莫能助,畢竟有翻跟沒翻一樣,都是有看沒有懂。 在數學上如果看到 if and only if  這類的句子,其實是表示一種 雙條件句 ,通常可以直接將其視為" 定義(Definition)" 待之,今天要分享的是這樣的一個句子如何用比較直觀的方法去看他 假設我們現在有 兩個邏輯陳述句 A 與  B. 注意到,在此我們不必考慮這兩個陳述句到底是什麼,想表達什麼,或者到底是否為真(true),這些都不重要。只要知道是兩個陳述即可。 現在,考慮新的陳述:  "A if and only if B" 好了,現在主角登場,我們可以怎麼看待這個句子呢? 事實上我們可以很直覺的把這句子拆成兩部分看待,也就是 "( A if B ) and ( A only if B )" 那麼先針對第一個部分  A if B  來看, 其實這句就是說  if B then A, 更直白一點就是 "if B is true, then A is also true".  在數學上等價可以寫為 "B implies A" .  或者更常用一個箭頭符號來表示 "B $\Rightarrow$  A"  現在針對第二個部分  A only if B 此句意指  "If B is not true, then A is also not true". 所以如果已知 A is true,  那麼按照上句不難推得 B is also true 也就是說  A only if B  等價為 "If A is true then B is also true". 同樣,也可以寫作   "A implies B"   或者用箭頭表示  "A   $\Rightarrow$     B".

[數學分析] 淺談各種基本範數 (Norm)

這次要介紹的是數學上一個重要的概念: Norm: 一般翻譯成 範數 (在英語中 norm 有規範的意思,比如我們說normalization就是把某種東西/物品/事件 做 正規化,也就是加上規範使其正常化),不過個人認為其實翻譯成 範數 也是看不懂的...這邊建議把 Norm 想成長度就好 (事實上norm是長度的抽象推廣), 也許讀者會認為好端端的長度不用,為何又要發明一個 norm 來自討苦吃?? 既抽象又艱澀。 事實上想法是這樣的: 比如說現在想要比較兩個數字 $3$ , $5$ 之間的大小,則我們可以馬上知道 $ 3 < 5 $;同樣的,如果再考慮小數與無理數如 $1.8753$ 與 $\pi$,我們仍然可以比較大小 $1.8753 < \pi = 3.1415...$ 故可以發現我們有辦法對 "純量" 做明確的比大小,WHY? 因為前述例子中 $3$, $5$, $1.8753$ or $\pi$ 其各自的大小有辦法被 "measure "! 但是如果是現在考慮的是一組數字 我們如何去measure 其大小呢?? 比如說 \[x:=[1, -2, 0.1, 0 ]^T \]上式的大小該是多少? 是 $1$? $-2$? $0.1$??? 再者如果更過分一點,我們考慮一個矩陣 \[A = \left[ {\begin{array}{*{20}{c}} 1&2\\ 3&4 \end{array}} \right] \],想要知道這個矩陣的大小又該怎麼辦?? 是 $1$ ? $2$ 還是 $4$ ?..其實現階段我們說不清楚。 也正是如此,可以發現我們確實需要新的 "長度" 的定義來幫助我們如何去 measure 矩陣/向量/甚至是函數的大小。 故此,我們首先定義甚麼是Norm,(也就是把 "長度" or "大小" 的本質抽離出來) ================== Definition: Norm 考慮 $V$ 為一個向量空間(Vector space),則我們說  Norm 為一個函數 $||\cdot|| : V \rightarrow \mathbb{R}$ 且滿足下列性質