Processing math: 23%

2/21/2015

[最佳估計] 狀態估測器的收斂性

考慮離散時間 LTI 系統
x(k+1)=Ax(k)+w(k)y(k)=Cx(k)+v(k)其中 xRn,uRm,yRpx(0)=x0

基本狀態估計問題:給定初始估計誤差 ( i.e., ˉx(0)x0) 且 不考慮 雜訊 無外部干擾的情況 (w(k)=v(k)=0),我們想問 ˆx(k)x(k) as k ?

=================
Theorem: (Convergence of Estimator Cost)
給定無 noise 量測輸出 y(T)={Cx(0),CAx(0),...,CATx(0)} 則最佳估測器的 cost VT(y(T)) 在 T 時收斂 。
=================

Proof:
由於
VT=12(|ˆx(0)ˉx(0)|2(P(0))1+T1k=0|ˆx(k+1)Aˆx(k)|2Q1+Tk=0|y(k)Cˆx(k)|2R1)故我們分三個步驟證明 VT(y(T)) 在 T 時收斂 :
首先證明 sequence {VT} 有上界(bounded above);接著我們證明 {VT} 為 nondecreasing。則由步驟一與步驟二可推論 {VT} 必定收斂。

現在我們開始證明 VT(y(T)) 有界:
由於我們的目標為 min 但我們並知道 怎樣的 \hat x 可以幫助我們達成此目標,故我們先暫取 \hat x(0) :=  x_0 (並不一定為最佳解!) 則我們有
\begin{array}{l} \left\{ \begin{array}{l} \hat x(1) = A\hat x(0)\\ \hat x(2) = A\hat x(1) = {A^2}\hat x(0)\\  \vdots \end{array} \right.\\  \Rightarrow y\left( k \right) = C{A^k}{x_0} \end{array}故若將此結果帶入我們的 cost 可得
\bar{V}_T^{} = \frac{1}{2}\left| {\hat x\left( 0 \right) - \bar x\left( 0 \right)} \right|_{{{\left( {{P^ - }\left( 0 \right)} \right)}^{ - 1}}}^2 < \infty 但注意到此並非最佳 cost,若代入最佳解 則我們必有
V_T^* \le \bar V_T 故可推論 sequence \{V_T^*\} 必定 bounded above。

接著我們證明 optimal cost sequence \{V_T^*\} 為 nondecreasing。
給定量測輸出 {\bf y}( T) = \{Cx(0), CAx(0),..., CA^T x(0)\},定義 在時間 T 的最佳狀態 sequence 為
\left\{ {\hat x\left( {0} \right),\hat x\left( {1} \right),...,\hat x\left( {T} \right)} \right\} 現在我們比對 T 時刻的 optimal cost 與 T-1 時刻的 optimal cost 可知
V_T^* - \frac{1}{2}\left( {\left| {y\left( {T - 1} \right) - C\hat x\left( {T - 1} \right)} \right|_{{R^{ - 1}}}^2 + |\hat x\left( T \right) - A\hat x\left( k \right)|_{{R^{ - 1}}}^2} \right) \ge V_{T - 1}^*此說明了 sequence \{V_T^*\} 為 nondecreasing。

故 由  optimal cost sequence \{V_T^*\}  bounded above 與 \{V_T^*\} 為 nondecreasing,我們可推論當 T \to \infty  \{V_T^*\} 必定收斂。 \square


注意到 optimal estimator cost V_T^* 的收斂性與 系統可觀測性無關,但若我們要求我們的估計狀態 \hat x \to x 則系統的觀測性將扮演重要腳色,我們將此結果記做以下定理:

==========================
Theorem: Estimator Convergence
考慮控制系統 (A,C) 可觀測 且 Q,R >0 為正定矩陣 且 給定一組無雜訊量測輸出
{\bf y}(T) := \{Cx(0), CAx(0), ..., CA^T x(0)\} 則 最佳狀態估測 收斂到原本系統狀態;亦即
\hat x(T) \to x(T) \;\; \text{ as $T \to \infty$} ==========================

Proof:
利用 在時刻 T+n-1 的最佳解作為在時刻 T-1的 decision variables ,則前述 Theorem 告訴我們可寫
\small V_{T + n - 1}^* - \frac{1}{2}\left[ {\sum\limits_{k = T - 1}^{T + n - 2} {|\hat x\left( {k + 1} \right) - A\hat x\left( k \right)|_{{Q^{ - 1}}}^2}  + \sum\limits_{k = T}^{T + n - 1} {\left| {y\left( k \right) - C\hat x\left( k \right)} \right|_{{R^{ - 1}}}^2} } \right] \ge V_{T - 1}^*做變數變換 令 j = k - T 我們可得
\small V_{T + n - 1}^* - \frac{1}{2}\left[ {\sum\limits_{j =  - 1}^{n - 2} {|\hat x\left( {T + j + 1} \right) - A\hat x\left( {T + j} \right)|_{{Q^{ - 1}}}^2}  + \sum\limits_{j = 0}^{n - 1} {\left| {y\left( {j + T} \right) - C\hat x\left( {j + T} \right)} \right|_{{R^{ - 1}}}^2} } \right] \ge V_{T - 1}^*注意到當 T \to \infty時, \{V_T^*\} 收斂 且 Q^{-1}, R^{-1} >0 故上式
\begin{array}{l} \underbrace {V_{T + n - 1}^* - V_{T - 1}^*}_{ \to 0} \ge \frac{1}{2}\left[ \begin{array}{l} \sum\limits_{j =  - 1}^{n - 2} {|\hat x\left( {T + j + 1} \right) - A\hat x\left( {T + j} \right)|_{{Q^{ - 1}}}^2} \\ \begin{array}{*{20}{c}} {}&{} \end{array} + \sum\limits_{j = 0}^{n - 1} {\left| {y\left( {j + T} \right) - C\hat x\left( {j + T} \right)} \right|_{{R^{ - 1}}}^2} \end{array} \right]\\  \Rightarrow \sum\limits_{j =  - 1}^{n - 2} {|\hat x\left( {T + j + 1} \right) - A\hat x\left( {T + j} \right)|_{{Q^{ - 1}}}^2}  + \sum\limits_{j = 0}^{n - 1} {\left| {y\left( {j + T} \right) - C\hat x\left( {j + T} \right)} \right|_{{R^{ - 1}}}^2}  \to 0\\  \Rightarrow \left\{ \begin{array}{l} \hat x\left( {T + j + 1} \right) - A\hat x\left( {T + j} \right) \to 0,\begin{array}{*{20}{c}} {} \end{array}\forall j =  - 1,...,n - 2\\ y\left( {j + T} \right) - C\hat x\left( {j + T} \right) \to 0,\begin{array}{*{20}{c}} {} \end{array}\forall j = 0,...,n - 1 \end{array} \right. \ \ \ \ \ \ (**) \end{array}\hat w_T(j) := \hat x(T+j+1|T+n-1) - A \hat x(T+j|T+n-1) 並且透過系統方程 x(k+1) = Ax(k) + w(k) 我們有
\begin{array}{l} \left[ {\begin{array}{*{20}{c}} {\hat x\left( {T|T + n - {\rm{1}}} \right)}\\ {\hat x\left( {T{\rm{ + 1}}|T + n - {\rm{1}}} \right)}\\  \vdots \\ {\hat x\left( {T + n - 1|T + n - {\rm{1}}} \right)} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} I\\ A\\  \vdots \\ {{A^{n - 1}}} \end{array}} \right]\hat x\left( {T|T + n - {\rm{1}}} \right)\\ \begin{array}{*{20}{c}} {}&{}&{}&{} \end{array} + \left[ {\begin{array}{*{20}{c}} 0&{}&{}&{}\\ I&0&{}&{}\\  \vdots & \vdots & \ddots &{}\\ {{A^{n - 2}}}&{{A^{n - 3}}}& \cdots &I \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{{\hat w}_T}\left( 0 \right)}\\ {{{\hat w}_T}\left( 1 \right)}\\  \vdots \\ {{{\hat w}_T}\left( {n - 2} \right)} \end{array}} \right]\ \ \ \ (*) \end{array} 且由於我們的量測輸出 滿足
\left\{ \begin{array}{l} y\left( T \right) = Cx\left( T \right)\\ y\left( {T + 1} \right) = CAx\left( T \right)\\  \vdots \\ y\left( {T + n - 1} \right) = C{A^{n - 1}}x\left( T \right) \end{array} \right. \Rightarrow \left[ {\begin{array}{*{20}{c}} {y\left( T \right)}\\ {y\left( {T + 1} \right)}\\  \vdots \\ {y\left( {T + n - 1} \right)} \end{array}} \right] = Ox\left( T \right)其中 O 為 observability matrix。現在用上式減去 同乘 C 矩陣 後的 (*) 可得
\begin{array}{l} \left[ {\begin{array}{*{20}{c}} {y\left( T \right)}\\ {y\left( {T + 1} \right)}\\  \vdots \\ {y\left( {T + n - 1} \right)} \end{array}} \right] - C\left[ {\begin{array}{*{20}{c}} {\hat x\left( {T|T + n - {\rm{1}}} \right)}\\ {\hat x\left( {T{\rm{ + 1}}|T + n - {\rm{1}}} \right)}\\  \vdots \\ {\hat x\left( {T + n - 1|T + n - {\rm{1}}} \right)} \end{array}} \right] = O\left[ {x\left( T \right) - \hat x\left( {T|T + n - {\rm{1}}} \right)} \right]\\ \begin{array}{*{20}{c}} {}&{}&{}&{} \end{array} + \left[ {\begin{array}{*{20}{c}} 0&{}&{}&{}\\ C&0&{}&{}\\  \vdots & \vdots & \ddots &{}\\ {C{A^{n - 2}}}&{C{A^{n - 3}}}& \cdots &C \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{{\hat w}_T}\left( 0 \right)}\\ {{{\hat w}_T}\left( 1 \right)}\\  \vdots \\ {{{\hat w}_T}\left( {n - 2} \right)} \end{array}} \right] \end{array}現在用 (**) 可知
\begin{array}{l} \underbrace {\left[ {\begin{array}{*{20}{c}} {y\left( T \right)}\\ {y\left( {T + 1} \right)}\\  \vdots \\ {y\left( {T + n - 1} \right)} \end{array}} \right] - C\left[ {\begin{array}{*{20}{c}} {\hat x\left( {T|T + n - {\rm{1}}} \right)}\\ {\hat x\left( {T{\rm{ + 1}}|T + n - {\rm{1}}} \right)}\\  \vdots \\ {\hat x\left( {T + n - 1|T + n - {\rm{1}}} \right)} \end{array}} \right]}_{ \to 0} = O\left[ {x\left( T \right) - \hat x\left( {T|T + n - {\rm{1}}} \right)} \right]\\ \begin{array}{*{20}{c}} {}&{}&{}&{} \end{array} + \underbrace {\left[ {\begin{array}{*{20}{c}} 0&{}&{}&{}\\ C&0&{}&{}\\  \vdots & \vdots & \ddots &{}\\ {C{A^{n - 2}}}&{C{A^{n - 3}}}& \cdots &C \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{{\hat w}_T}\left( 0 \right)}\\ {{{\hat w}_T}\left( 1 \right)}\\  \vdots \\ {{{\hat w}_T}\left( {n - 2} \right)} \end{array}} \right]}_{ \to 0}\\  \Rightarrow O\left[ {x\left( T \right) - \hat x\left( {T|T + n - {\rm{1}}} \right)} \right] \to 0 \end{array}又因為 observability matrix O 有 linear independent columns,故我們可推知
x\left( T \right) - \hat x\left( {T|T + n - {\rm{1}}} \right) \to 0 \;\; \text{as $T \to \infty$}亦即
\hat x\left( {T|T + n - {\rm{1}}} \right) \to x\left( T \right) 再者如果我們觀察 (*) 可以發現因為 \hat w_T (j) \to 0T \to \infty,故
\hat x\left( {T + n - 1|T + n - {\rm{1}}} \right) \to {A^{n - 1}}\hat x\left( {T|T + n - {\rm{1}}} \right) \;\;\;\; \text{ as $T \to \infty$}又因為 A^{n-1} x(T) = x(T + n -1) ,我們有
\begin{array}{l} x\left( {T + n - 1} \right) - \hat x\left( {T + n - 1|T + n - {\rm{1}}} \right) \to {A^{n - 1}}x\left( T \right) - {A^{n - 1}}\hat x\left( {T|T + n - {\rm{1}}} \right)\\  \Rightarrow x\left( {T + n - 1} \right) - \hat x\left( {T + n - 1|T + n - {\rm{1}}} \right) \to {A^{n - 1}}\underbrace {\left[ {x\left( T \right) - \hat x\left( {T|T + n - {\rm{1}}} \right)} \right]}_{ \to 0}\\  \Rightarrow x\left( {T + n - 1} \right) \to \hat x\left( {T + n - 1|T + n - {\rm{1}}} \right)\\  \Rightarrow x\left( {T + n - 1} \right) \to \hat x\left( {T + n - 1} \right)\\  \Rightarrow x\left( j \right) \to \hat x\left( j \right),\begin{array}{*{20}{c}} {} \end{array}\forall j \to \infty \end{array}至此得證

沒有留言:

張貼留言

[人工智慧] 本地端 DeepSeek R1 快速安裝:以 Macbook Pro M4 Chip為例

最近火熱的 DeepSeek R1 模型由於採用了 distill 技術,可以大幅降低計算成本,使得一般人有機會在自家筆電上跑性能逼近 Open AI ChatGPT o1的大語言模型。本文簡單介紹一步安裝在 Macbook Pro 的方法以及使用方法,以下測試採用 Macboo...