跳到主要內容

[投資理論] 股價動態模型(1) - 離散時間乘法模型

此文我們將討論離散時間股價較為合宜的動態模型:令 $k=0,1,2,...,N-1$ 且 $S(k) >0$ 為時刻 $k$ 之股價 且 $S(0)$ 已知常數,現在考慮股價服從以下 乘法模型
\[
S(k+1) = u(k) S(k) \;\;\;\; (*)
\] 其中  $u(k)$ 為  mutually independent 隨機變數 (代表時刻 $k$ 到 $k+1$ 股價的相對變化,亦即 $u(k) = S(k+1)/S(k)$)。現在對上述乘法模型等號兩邊取對數
\begin{align*}
  \ln S(k + 1) &= \ln \left( {u(k)S(k)} \right) \hfill \\
  & = \ln u(k) + \ln \left( {S(k)} \right)
\end{align*}
上述等號對 $k=0,1,2...,N-1$ 皆成立。

Comments:
1. 上述乘法模型中的 $u(k)$ 導致下一時刻的股價產生隨機波動,此結果在一般經濟學中稱為 價格衝擊 (shocks) 在控制理論中被稱為 干擾 (disturbances) 。
2. 上述乘法模型為股價離散時間標準模型,若我們考慮上述 $k=0,1,...,N$ 發生在 時間範圍 $\Delta t$ 之間,則讓 $N \to \infty$ 我們可以近似 股價連續時間的標準模型,也就是 幾何布朗運動 (Geometric Brownian Motion),但此非本文重點在此不做贅述,有興趣的讀者可以參閱本 BLOG其他相關幾何布朗運動的文章。



對數常態分布的股價 (Log-normal Price)
現在對  $k=0,1,2...,N-1$ ,定義 $w(k):= \ln u(k)$ 且我們指定 $w(k)$ 服從具有 $E[w(k)] = \mu$ 與變異數 $Var(w(k)) = \sigma^2$ 的常態分佈 且 $w(k)$ mutually independent 。

Comments:
由於 $w(k):= \ln u(k)$,我們有 $u(k) = exp(w(k))$ 且 由於 $w(k) \sim N(\mu, \sigma^2)$ 故 $u(k)$ 為 log-normal 隨機變數 (亦即 取 log 之後為常態分配) 。


由乘法模型,不難得知
\[\ln S(k) = \ln \left[ {u(k - 1)u(k - 2) \cdots u\left( 0 \right)S(0)} \right]
\]故若對等號兩邊同取 log可知
\begin{align*}
  \ln S(k) &= \ln S\left( 0 \right) + \sum\limits_{i = 0}^{k - 1} {\ln u(i)}  \hfill \\
   &= \ln S\left( 0 \right) + \sum\limits_{i = 0}^{k - 1} {w(i)}  \hfill \\
\end{align*}
注意到 $\ln S(0)$ 為已知常數,且 $w(i)$ 為 mutually independent 的常態分佈隨機變數 滿足 期望值 $\mu$ 與變異數 $\sigma^2$,故由大學部機率論可知, $\sum_{i=0}^{k-1} w(i)$ 亦為常態隨機變數且其期望值為 $k \mu$ 變異數為 $k \sigma^2$,亦即
\[\sum\limits_{i = 0}^{k - 1} {w(i)} \sim N\left( {k\mu ,k{\sigma ^2}} \right)\]
又因為 $\ln S(0)$ 為已知常數,故 $\ln S(k)$ 亦為常態分佈滿足
\[\ln S(k)\sim N\left( {\ln S\left( 0 \right) + k\mu ,k{\sigma ^2}} \right)\]

Comments
一般在實務上的角度,真實股價 的確反映了 lognormal 分佈的行為但在分佈的兩端會有較大的不一致性,這種性質稱之為 skewness,在此不贅述。讀者可以自行任取市面上的股價進行驗證。

留言

這個網誌中的熱門文章

[數學分析] 什麼是若且唯若 "if and only if"

數學上的 if and only if  ( 此文不討論邏輯學中的 if and only if,只討論數學上的 if and only if。) 中文翻譯叫做  若且唯若 (or 當且僅當) , 記得當初剛接觸這個詞彙的時候,我是完全不明白到底是甚麼意思,查了翻譯也是愛莫能助,畢竟有翻跟沒翻一樣,都是有看沒有懂。 在數學上如果看到 if and only if  這類的句子,其實是表示一種 雙條件句 ,通常可以直接將其視為" 定義(Definition)" 待之,今天要分享的是這樣的一個句子如何用比較直觀的方法去看他 假設我們現在有 兩個邏輯陳述句 A 與  B. 注意到,在此我們不必考慮這兩個陳述句到底是什麼,想表達什麼,或者到底是否為真(true),這些都不重要。只要知道是兩個陳述即可。 現在,考慮新的陳述:  "A if and only if B" 好了,現在主角登場,我們可以怎麼看待這個句子呢? 事實上我們可以很直覺的把這句子拆成兩部分看待,也就是 "( A if B ) and ( A only if B )" 那麼先針對第一個部分  A if B  來看, 其實這句就是說  if B then A, 更直白一點就是 "if B is true, then A is also true".  在數學上等價可以寫為 "B implies A" .  或者更常用一個箭頭符號來表示 "B $\Rightarrow$  A"  現在針對第二個部分  A only if B 此句意指  "If B is not true, then A is also not true". 所以如果已知 A is true,  那麼按照上句不難推得 B is also true 也就是說  A only if B  等價為 "If A is true then B is also true". 同樣,也可以寫作   "A implies B"   或者用箭頭表示  "A   $\Rightarrow$     B".

[數學分析] 淺談各種基本範數 (Norm)

這次要介紹的是數學上一個重要的概念: Norm: 一般翻譯成 範數 (在英語中 norm 有規範的意思,比如我們說normalization就是把某種東西/物品/事件 做 正規化,也就是加上規範使其正常化),不過個人認為其實翻譯成 範數 也是看不懂的...這邊建議把 Norm 想成長度就好 (事實上norm是長度的抽象推廣), 也許讀者會認為好端端的長度不用,為何又要發明一個 norm 來自討苦吃?? 既抽象又艱澀。 事實上想法是這樣的: 比如說現在想要比較兩個數字 $3$ , $5$ 之間的大小,則我們可以馬上知道 $ 3 < 5 $;同樣的,如果再考慮小數與無理數如 $1.8753$ 與 $\pi$,我們仍然可以比較大小 $1.8753 < \pi = 3.1415...$ 故可以發現我們有辦法對 "純量" 做明確的比大小,WHY? 因為前述例子中 $3$, $5$, $1.8753$ or $\pi$ 其各自的大小有辦法被 "measure "! 但是如果是現在考慮的是一組數字 我們如何去measure 其大小呢?? 比如說 \[x:=[1, -2, 0.1, 0 ]^T \]上式的大小該是多少? 是 $1$? $-2$? $0.1$??? 再者如果更過分一點,我們考慮一個矩陣 \[A = \left[ {\begin{array}{*{20}{c}} 1&2\\ 3&4 \end{array}} \right] \],想要知道這個矩陣的大小又該怎麼辦?? 是 $1$ ? $2$ 還是 $4$ ?..其實現階段我們說不清楚。 也正是如此,可以發現我們確實需要新的 "長度" 的定義來幫助我們如何去 measure 矩陣/向量/甚至是函數的大小。 故此,我們首先定義甚麼是Norm,(也就是把 "長度" or "大小" 的本質抽離出來) ================== Definition: Norm 考慮 $V$ 為一個向量空間(Vector space),則我們說  Norm 為一個函數 $||\cdot|| : V \rightarrow \mathbb{R}$ 且滿足下列性質