考慮兩投資組合 $\{P_1, P_2\}$ 且令 $\{E_1, \sigma_1^2\}; \;\;\; \{E_2, \sigma_2^2 \}$ 分別為投資組合 $P_1$ 與 $P_2$ 之期望報酬 與 報酬變異
============================
Definition: Domination of Portfolios :
假設投資組合 $P_1$ 比另一 投資組合 $P_2$ 具有較高的期望報酬 與 較低的變異 (亦即 $E_1 > E_2$ 且 $\sigma_1^2 < \sigma_2^2$),則我們稱 $P_1$ dominates $P_2$ 。
我們稱 $P_1$ 為 dominate $P_2$ in minimum variance sense 若 $\sigma_1 < \sigma_2$
同理,我們稱 $P_1$ 為 dominate $P_2$ in maximum expected return sense 若 $E_1 > E_2$
============================
令 $P$ 為一組投資組合,我們利用上述討論,可以進一步給出 efficient portfolio 定義。
============================Definition: Efficient Portfolio
1. 若沒有其他 投資組合可以 dominates $P$,則我們稱 $P$為 (absolutely) efficient。
2. 若沒有其他 投資組合 可以 dominate $P$ in minimum variance sense 則我們稱 $P$ 為 efficient in variance sense
3. 同理,若沒有其他 投資組合 可以 dominate $P$ in maximum expected return sense 則我們稱 $P$ 為 efficient in expected return sense
============================
1. 上述嚴格不等式 $>$ 可以替換為 較弱的不等式 $\geq$。
2. 上述 三種 efficient 投資組合 (absolute efficient, efficient in variance sense, efficient in expected return sense ) 一般泛稱為 efficient,不多做區分。順帶一提,這一類的 efficient portfolio 會落在 所謂的 效率前緣 (efficient frontier ),有興趣讀者可參閱一般投資學或者資產配置理論的相關書籍,在此不多做贅述。
Markowitz' Mean-Variance 理論的潛在缺失:
以下我們討論上述 Mean-Variance 理論的潛在缺失:我們同樣使用前述的設定:考慮兩投資組合 $\{P_1, P_2\}$ 且令 $
\{E_1, \sigma_1^2\}; \;\;\; \{E_2, \sigma_2^2 \}
$ 分別為投資組合 $P_1$ 與 $P_2$ 之 期望報酬 與 報酬變異
現假設 $E_1 < E_2$ 且 $\sigma_1^2 < \sigma_2^2$,則上述 Markowitz 理論並無法決定到底 $P_1$ 好 還是 $P_2$ 好。或者說 Markowitz 理論無法告知到底是 $P_1$ 或者 $P_2$ 較為 efficient。以下我們給出一個更具體的例子說明此一論點。
Example
考慮三組 彼此獨立隨機變數 $r_1 \sim U[1,3]$, $r_2 \sim U[10, 100]$ ,且 $r_3 = 0$ almost surely,分別表示三種資產的報酬,我們現在對其建構投資組合如下:令 $K_1,K_2,K_3$ 分別為 $r_1,r_2, r_3$之權重 滿足 $K_i \geq 0$ 且 $\sum_{i}^3 K_i = 1$,則投資組合 (記作 $P$ ) 之報酬 (記作 $r_p$)可表為
\[
r_p := K_1 r_1 + K_2 r_2 + K_3 r_3
\]則我們可計算上述投資組合的期望資產
\begin{align*}
\mathbb{E}\left[ {\sum\limits_{i = 1}^3 {{K_i}{r_i}} } \right] &= \sum\limits_{i = 1}^3 {{K_i}\mathbb{E}\left[ {{r_i}} \right]} \hfill \\
&= {K_1} \cdot 2 + {K_2} \cdot 55 + {K_3} \cdot 0 \hfill \\
&= 2{K_1} + 55{K_2} \hfill \\
\end{align*} 且對應的報酬變異為
\begin{align*}
Var\left[ {\sum\limits_{i = 1}^3 {{K_i}{r_i}} } \right] &= \sum\limits_{i = 1}^3 {{K_i}Var\left[ {{r_i}} \right]} \hfill \\
& = {K_1} \cdot \frac{1}{{12}}{\left( {3 - 1} \right)^2} + {K_2} \cdot \frac{1}{{12}}{\left( {100 - 10} \right)^2} + {K_3} \cdot 0 \hfill \\
& = \frac{1}{3}{K_1} + 675{K_2} \hfill \\
\end{align*}
但是注意到若取 $K_3 :=1, (K_1 = K_2 = 0)$ 則我們可得 efficient portfolio (in variance sense) :因為此投資組合具有零變異。
另一方面,若取 $K_2 :=1, (K_1 = K_3 = 0)$,則我們亦得到另一組 efficient portfolio (in expected return sense):因為此投資組合具有最大正期望值。
Comments
事實上,由前述 Markowitz 理論的定義,那麼我們可以找出無窮多種 efficient portfolio,但 Markowitz 的理論並無法提供更進一步資訊來告訴我們何者才是真正最好的 投資組合。在經濟學中或一般金融工程領域,會建議投資人採用 效用函數 (utility function) 作為新的判準,來做最佳化投資組合的績效,比如說我們可定義效用函數 $U(x) := a x + \frac{1}{2}b x^2 $ 滿足 $a>0, b\geq 0$ ,則我們可以考慮 最佳化問題 如下
\[
\max_{K} \mathbb{E}[U(r_p)]
\] 有興趣讀者可參閱 相關文獻 或者 本 Blog 相關文章,在此不再贅述。
沒有留言:
張貼留言