跳到主要內容

[隨機系統] 淺論賭博系統理論 (1)

考慮某賭博系統其報酬率定義為 i.i.d. 隨機變數,記作 $X(k)$  且具有分佈 $F_X$ 。現在定義 $V(k)$ 為在時刻 $k$ 之資產價值,且令 $K \in [0,1]$ 為投資比率,則時刻 $k$ 之投資策略可記作
\[
I(k) := K V(k)
\]且投資人資產動態模型可表為
\begin{align*}
  V(k + 1) &= V(k) + I(k)X(k) \hfill \\
   &= V(k) + KX(k)V(k) \hfill \\
   &= \left( {1 + KX(k)} \right)V(k) \hfill \\
\end{align*}

Definition: Growth Rate and Optimal Growth Rate
以投資比率 $K$ 為投資策略之資產成長率 (Growth Rate) 定義為
\[
g(K) := E[\log(1+K X(k))]
\]
另外我們接著定義 最佳成長率 (Optimal Growth Rate) 如下
\[
g^* := \max_K g(K)
\]且我們稱 $K^*$ 達到 $g^*$ 為 log-optimal feedback gain。


Comments:
上述問題的最簡形式(投擲單一銅板問題) 即為經典 凱利問題 (Kelly Optimization Problem) 且上述的最大化成長率又稱為凱利判准 (Kelly Criterion),有興趣讀者請參閱本部落格關於凱利問題的相關文章。


上述最佳成長率存在性由下列定理確保。

=================
Theorem:
令 $X(0),X(1),...X(N-1)$ 為 i.i.d. 報酬 且具有分佈 $F_X$,現在令
\[\frac{{{V^*}(N)}}{{V(0)}} = \prod\limits_{k = 0}^{N-1} {\left( {1 + {K^*}X(k)} \right)} \]則當 $N \to \infty$,我們有
\[\frac{1}{N}\log \frac{{{V^*}(N)}}{{V(0)}} \to {g^*}\]almost surely.
=================

Proof: 首先觀察
\begin{align*}
  \frac{1}{N}\log \frac{{{V^*}(N)}}{{V(0)}} &= \frac{1}{N}\log \prod\limits_{k = 0}^{N - 1} {\left( {1 + {K^*}X(k)} \right)}  \hfill \\
   &= \frac{1}{N}\sum\limits_{k = 0}^{N - 1} {\log \left( {1 + {K^*}X(k)} \right)}  \hfill \\
\end{align*}接著注意到因為  $\{X(0),X(1),...X(N-1)\}$ 為 i.i.d. 故
\[
\{1 + {K^*}X(1),  \;1 + {K^*}X(1),...,\; 1 + {K^*}X(N-1)\}
\]亦為 i.i.d. ,且注意到 $ E\left[ {\log \left( {1 + {K^*}X(0)} \right)} \right] = {g^*}$ 故 利用 強大數法則 (請參閱下方 FACT) 可得當 $n \to \infty$ 我們有
\[\frac{1}{N}\sum\limits_{k = 0}^{N - 1} {\log \left( {1 + {K^*}X(k)} \right)}  \to E\left[ {\log \left( {1 + {K^*}X(0)} \right)} \right] = {g^*}\]almost surely。即為所求。 $\square$


=================
FACT: 強大數法則 (Strong Law of Large Numbers): 若 $X(1),X(2)...$ 為 i.i.d. 隨機變數且 $E[X(0)] $ 存在 。現令 $S(N):=X(1)+X(2)+...+X(N)$ ,則當 $N \to \infty$ 我們有
\[
\frac{S(N)}{N} \to E[X(0)]
\]almost surely
=================
Proof: Omitted. see R. Durrett, Probability Theory and Examples,





留言

這個網誌中的熱門文章

[數學分析] 什麼是若且唯若 "if and only if"

數學上的 if and only if  ( 此文不討論邏輯學中的 if and only if,只討論數學上的 if and only if。) 中文翻譯叫做  若且唯若 (or 當且僅當) , 記得當初剛接觸這個詞彙的時候,我是完全不明白到底是甚麼意思,查了翻譯也是愛莫能助,畢竟有翻跟沒翻一樣,都是有看沒有懂。 在數學上如果看到 if and only if  這類的句子,其實是表示一種 雙條件句 ,通常可以直接將其視為" 定義(Definition)" 待之,今天要分享的是這樣的一個句子如何用比較直觀的方法去看他 假設我們現在有 兩個邏輯陳述句 A 與  B. 注意到,在此我們不必考慮這兩個陳述句到底是什麼,想表達什麼,或者到底是否為真(true),這些都不重要。只要知道是兩個陳述即可。 現在,考慮新的陳述:  "A if and only if B" 好了,現在主角登場,我們可以怎麼看待這個句子呢? 事實上我們可以很直覺的把這句子拆成兩部分看待,也就是 "( A if B ) and ( A only if B )" 那麼先針對第一個部分  A if B  來看, 其實這句就是說  if B then A, 更直白一點就是 "if B is true, then A is also true".  在數學上等價可以寫為 "B implies A" .  或者更常用一個箭頭符號來表示 "B $\Rightarrow$  A"  現在針對第二個部分  A only if B 此句意指  "If B is not true, then A is also not true". 所以如果已知 A is true,  那麼按照上句不難推得 B is also true 也就是說  A only if B  等價為 "If A is true then B is also true". 同樣,也可以寫作   "A implies B"   或者用箭頭表示  "A   $\Rightarrow$     B".

[數學分析] 淺談各種基本範數 (Norm)

這次要介紹的是數學上一個重要的概念: Norm: 一般翻譯成 範數 (在英語中 norm 有規範的意思,比如我們說normalization就是把某種東西/物品/事件 做 正規化,也就是加上規範使其正常化),不過個人認為其實翻譯成 範數 也是看不懂的...這邊建議把 Norm 想成長度就好 (事實上norm是長度的抽象推廣), 也許讀者會認為好端端的長度不用,為何又要發明一個 norm 來自討苦吃?? 既抽象又艱澀。 事實上想法是這樣的: 比如說現在想要比較兩個數字 $3$ , $5$ 之間的大小,則我們可以馬上知道 $ 3 < 5 $;同樣的,如果再考慮小數與無理數如 $1.8753$ 與 $\pi$,我們仍然可以比較大小 $1.8753 < \pi = 3.1415...$ 故可以發現我們有辦法對 "純量" 做明確的比大小,WHY? 因為前述例子中 $3$, $5$, $1.8753$ or $\pi$ 其各自的大小有辦法被 "measure "! 但是如果是現在考慮的是一組數字 我們如何去measure 其大小呢?? 比如說 \[x:=[1, -2, 0.1, 0 ]^T \]上式的大小該是多少? 是 $1$? $-2$? $0.1$??? 再者如果更過分一點,我們考慮一個矩陣 \[A = \left[ {\begin{array}{*{20}{c}} 1&2\\ 3&4 \end{array}} \right] \],想要知道這個矩陣的大小又該怎麼辦?? 是 $1$ ? $2$ 還是 $4$ ?..其實現階段我們說不清楚。 也正是如此,可以發現我們確實需要新的 "長度" 的定義來幫助我們如何去 measure 矩陣/向量/甚至是函數的大小。 故此,我們首先定義甚麼是Norm,(也就是把 "長度" or "大小" 的本質抽離出來) ================== Definition: Norm 考慮 $V$ 為一個向量空間(Vector space),則我們說  Norm 為一個函數 $||\cdot|| : V \rightarrow \mathbb{R}$ 且滿足下列性質