給定 $X_1,...,X_n$ 為一組 i.i.d. 非負隨機變數,現在令 $M:=\max\{X_1,...,X_n\}$我們想問
\[
E[M] =?
\]
首先我們回憶
\[E[M] = \sum\limits_{k \geqslant 0} P (M > k) = \sum\limits_{k \geqslant 0} {\left( {1 - P(M \leqslant k)} \right)}
\]上述第一等式利用 非負隨機變數的期望值的性質(亦即若 $X$ 為非負隨機變數,則 $E[X] = \int_0^\infty P(X>x)dx$),在此不做贅述。現在注意到
\begin{align*}
P(M \leqslant k) &= P\left( {\max \left\{ {{X_1},...,{X_n}} \right\} \leqslant k} \right) \hfill \\
&= P\left( {\bigcap\limits_{i = 1}^n {{X_i} \leqslant k} } \right) \hfill \\
& = P{\left( {{X_1} \leqslant k} \right)^n} \hfill \\
\end{align*} 上述最後一條等式成立 因為 i.i.d 性質。故我們得到
\begin{align*}
E[M] &= \sum\limits_{k \geqslant 0} {\left( {1 - P(M \leqslant k)} \right)} \hfill \\
&= \sum\limits_{k \geqslant 0} {\left( {1 - P{{\left( {{X_1} \leqslant k} \right)}^n}} \right)} \hfill \\
\end{align*}
If you can’t solve a problem, then there is an easier problem you can solve: find it. -George Polya
訂閱:
張貼留言 (Atom)
[人工智慧] 本地端 DeepSeek R1 快速安裝:以 Macbook Pro M4 Chip為例
最近火熱的 DeepSeek R1 模型由於採用了 distill 技術,可以大幅降低計算成本,使得一般人有機會在自家筆電上跑性能逼近 Open AI ChatGPT o1的大語言模型。本文簡單介紹一步安裝在 Macbook Pro 的方法以及使用方法,以下測試採用 Macboo...
-
數學上的 if and only if ( 此文不討論邏輯學中的 if and only if,只討論數學上的 if and only if。) 中文翻譯叫做 若且唯若 (or 當且僅當) , 記得當初剛接觸這個詞彙的時候,我是完全不明白到底是甚麼意思,查了翻譯也是愛...
-
這次要介紹的是數學上一個重要的概念: Norm: 一般翻譯成 範數 (在英語中 norm 有規範的意思,比如我們說normalization就是把某種東西/物品/事件 做 正規化,也就是加上規範使其正常化),不過個人認為其實翻譯成 範數 也是看不懂的...這邊建議把 No...
-
半導體中的電流是由電子(electron)及電洞(hole)兩種載子(carrier)移動所產生 載子移動的方式: 擴散(diffusion) $\Rightarrow$ 擴散電流 (不受外力電場作用) 飄移(drift) $\Rightarrow$ 飄移電流 (受外...
沒有留言:
張貼留言