跳到主要內容

[機率論] 關於配備 Pareto Density 隨機變數 的一個簡單例子

令 $X$ 為隨機變數配備標準 Pareto density,亦即其機率密度函數 $f_X$ 滿足
\[f_X\left( x \right): = \left\{ \begin{gathered}
  \frac{2}{{{x^3}}}\begin{array}{*{20}{c}}
  {}&{x \geqslant 1}
\end{array} \hfill \\
  0\begin{array}{*{20}{c}}
  {}&{o.w.}
\end{array} \hfill \\
\end{gathered}  \right.\]
(a) 對任意 $a \geq 1$ 試求 $P(X \geq a)$
(b) 延續 (a),利用 Markov inequality 求其上界。

Proof (a)
\begin{align*}
  P(X \geqslant a) &= 1 - P\left( {X < a} \right) \hfill \\
   &= 1 - \int_1^a {\frac{2}{{{x^3}}}dx}  \hfill \\
   &= 1 - 2\left( {\left. {\frac{{{x^{ - 2}}}}{{ - 2}}} \right|_1^a} \right) \hfill \\
   &= \frac{1}{{{a^2}}} \hfill \\
\end{align*}

Comments: 讀者可注意到上述結果亦可 透過直接計算
\[P\left( {X \geqslant a} \right) = \int_a^\infty  {\frac{2}{{{x^3}}}dx}  = 2\left( {\frac{1}{{ - 2}}\left. {{x^{ - 2}}} \right|_a^\infty } \right) = {a^{ - 2}}\]


Proof (b):
注意到 $X$ 為取值非負隨機變數,故對任意 $a \geq 1$,利用 Markov inequality, 我們有
\begin{align*}
  P(X \geqslant a) &\leqslant \frac{{E\left[ X \right]}}{a} \hfill \\
   &= \frac{1}{a}\int_{ - \infty }^\infty  {x{f_X}\left( x \right)dx}  \hfill \\
   &= \frac{1}{a}\int_1^\infty  {x\frac{2}{{{x^3}}}dx}  \hfill \\
   &= \frac{2}{a}\int_1^\infty  {\frac{1}{{{x^2}}}dx}  \hfill \\
   &=  - \frac{2}{a}\left( {\left. {{x^{ - 1}}} \right|_1^\infty } \right) =  - \frac{2}{a}\left( {0 - 1} \right) = \frac{2}{a} \hfill \\
\end{align*}

Comments:
1. 注意到上述 (b) 部分透過 Markov inequality 所得到的上界只有在 $a \geq 2$ 才有效力,因為當 $a \in [1,2]$ 之間時,我們得到 $2/a >1$。但由於機率測度不能超過 $1$,上述 $2/a$ 上界在 $a \in [1,2]$ 之間對我們的 $P(X \geq a)$ 的估計並無任何幫助。


2. 注意到 $a \geq 1$ 故不難得證
\[\frac{1}{{{a^2}}} \leqslant \frac{2}{a} \] 此說明了在此分佈之下,利用 Markov inequality 所得到的機率上界過鬆。下圖顯示了 $a \in [1,5]$ 的機率 與 Markov inequality所得的上界



留言

這個網誌中的熱門文章

[數學分析] 什麼是若且唯若 "if and only if"

數學上的 if and only if  ( 此文不討論邏輯學中的 if and only if,只討論數學上的 if and only if。) 中文翻譯叫做  若且唯若 (or 當且僅當) , 記得當初剛接觸這個詞彙的時候,我是完全不明白到底是甚麼意思,查了翻譯也是愛莫能助,畢竟有翻跟沒翻一樣,都是有看沒有懂。 在數學上如果看到 if and only if  這類的句子,其實是表示一種 雙條件句 ,通常可以直接將其視為" 定義(Definition)" 待之,今天要分享的是這樣的一個句子如何用比較直觀的方法去看他 假設我們現在有 兩個邏輯陳述句 A 與  B. 注意到,在此我們不必考慮這兩個陳述句到底是什麼,想表達什麼,或者到底是否為真(true),這些都不重要。只要知道是兩個陳述即可。 現在,考慮新的陳述:  "A if and only if B" 好了,現在主角登場,我們可以怎麼看待這個句子呢? 事實上我們可以很直覺的把這句子拆成兩部分看待,也就是 "( A if B ) and ( A only if B )" 那麼先針對第一個部分  A if B  來看, 其實這句就是說  if B then A, 更直白一點就是 "if B is true, then A is also true".  在數學上等價可以寫為 "B implies A" .  或者更常用一個箭頭符號來表示 "B $\Rightarrow$  A"  現在針對第二個部分  A only if B 此句意指  "If B is not true, then A is also not true". 所以如果已知 A is true,  那麼按照上句不難推得 B is also true 也就是說  A only if B  等價為 "If A is true then B is also true". 同樣,也可以寫作   "A implies B"   或者用箭頭表示  "A   $\Rightarrow$     B".

[數學分析] 淺談各種基本範數 (Norm)

這次要介紹的是數學上一個重要的概念: Norm: 一般翻譯成 範數 (在英語中 norm 有規範的意思,比如我們說normalization就是把某種東西/物品/事件 做 正規化,也就是加上規範使其正常化),不過個人認為其實翻譯成 範數 也是看不懂的...這邊建議把 Norm 想成長度就好 (事實上norm是長度的抽象推廣), 也許讀者會認為好端端的長度不用,為何又要發明一個 norm 來自討苦吃?? 既抽象又艱澀。 事實上想法是這樣的: 比如說現在想要比較兩個數字 $3$ , $5$ 之間的大小,則我們可以馬上知道 $ 3 < 5 $;同樣的,如果再考慮小數與無理數如 $1.8753$ 與 $\pi$,我們仍然可以比較大小 $1.8753 < \pi = 3.1415...$ 故可以發現我們有辦法對 "純量" 做明確的比大小,WHY? 因為前述例子中 $3$, $5$, $1.8753$ or $\pi$ 其各自的大小有辦法被 "measure "! 但是如果是現在考慮的是一組數字 我們如何去measure 其大小呢?? 比如說 \[x:=[1, -2, 0.1, 0 ]^T \]上式的大小該是多少? 是 $1$? $-2$? $0.1$??? 再者如果更過分一點,我們考慮一個矩陣 \[A = \left[ {\begin{array}{*{20}{c}} 1&2\\ 3&4 \end{array}} \right] \],想要知道這個矩陣的大小又該怎麼辦?? 是 $1$ ? $2$ 還是 $4$ ?..其實現階段我們說不清楚。 也正是如此,可以發現我們確實需要新的 "長度" 的定義來幫助我們如何去 measure 矩陣/向量/甚至是函數的大小。 故此,我們首先定義甚麼是Norm,(也就是把 "長度" or "大小" 的本質抽離出來) ================== Definition: Norm 考慮 $V$ 為一個向量空間(Vector space),則我們說  Norm 為一個函數 $||\cdot|| : V \rightarrow \mathbb{R}$ 且滿足下列性質