12/24/2017

[凸分析] 任意遞增函數為 quasiconcave 與 quasiconvex

=============
Theorem:
令 $f : \mathbb{R} \to \mathbb{R}$ 為遞增函數,則 $f$ 同時為 quasiconcave 與 quasiconvex。
=============

Proof:
考慮 $x,y \in \mathbb{R}$ 且 $\lambda \in (0,1)$,在不失一般性情況我們假設 $x>y$,則
\[
x > \lambda x + (1-\lambda)y > y
\]因為 $f$ 遞增,我們有
\[
f(x) > f( \lambda x + (1-\lambda)y) > f(y) \;\;\;\; (**)
\]由上述不等式,我們可寫
 $$
f(x) = \max\{f(x),f(y)\}
$$故由第一部分的不等式,我們有
\[
 \max\{f(x),f(y)\} > f( \lambda x + (1-\lambda)y)
\]此表明 $f$ 為 quasiconvex。

同理,由 $(**)$ 我們亦可寫下
\[
f(y) := \min\{f(x),f(y)\}
\]故由第二部分的不等式,我們有
\[
 f( \lambda x + (1-\lambda)y) >\min\{f(x),f(y)\}
\]此表明 $f$ 為 quasiconcave 至此證明完畢。$\square$

沒有留言:

張貼留言

[隨筆] 當學生研究遇上「做不出來」的困境

這幾年指導學生的時候常遇到的問題就是學生會說「因為 OOO 做不出來,所以改用 XXX 方法」,有的甚至直接跳到 metaheuristic 方法,或者學生就等著看老師要怎麼辦,抑或是看能不能就直接更換題目。這種時候都讓我感到相當痛苦。 要知道「做不出來」(是主觀能力認定) ...